python矩阵赋值_python关于矩阵重复赋值覆盖问题的解决方法

本文实例讲述了python关于矩阵重复赋值覆盖问题的解决方法。分享给大家供大家参考,具体如下:

import itertools

import numpy as np

comb = list(itertools.combinations(list(range(regions)), 2))

bands_info = []

coeff = np.zeros([bands, len(comb)])

for cla in range(classes):

class_info = data[:,cla*bands*regions:(cla+1)*bands*regions]

for bs in range(bands):

n = bs*regions

for i in range(len(comb)):

index1 = comb[i][0]+n

index2 = comb[i][1]+n

part1 = class_info[:, index1]

part2 = class_info[:, index2]

coeff[bs, i] = (np.corrcoef(part1, part2))[0, 1]

bands_info.append(coeff.reshape([1,-1]))

coeff_info = np.vstack((bands_info[0], bands_info[1], bands_info[2],bands_info[3]))

例如这个循环赋值过程,最终得出来的结果是bands_info这个List里面每一个矩阵都是一样的,这是为什么呢?我一开始也在这里纠结了很长时间,思来想去感觉没错的呀。后来想想以前学的C语言知识,才有点明白。原来python里面有浅层copy和深层copy这一说,同是一个矩阵的话占用的是同一个地址,在里面进行重复赋值的话前面的值都会被覆盖掉。不只是当前变量被覆盖掉,就是你之后用到这个变量的也会被覆盖。比如说你a的变量被b覆盖了,那你后面用到a的变量的地方,a的值也会变成b的值。是不是很可怕。

那么应该怎么进行修改呢?

import itertools

import numpy as np

comb = list(itertools.combinations(list(range(regions)), 2))

bands_info = []

for cla in range(classes):

coeff = np.zeros([bands, len(comb)])

class_info = data[:,cla*bands*regions:(cla+1)*bands*regions]

for bs in range(bands):

n = bs*regions

for i in range(len(comb)):

index1 = comb[i][0]+n

index2 = comb[i][1]+n

part1 = class_info[:, index1]

part2 = class_info[:, index2]

coeff[bs, i] = (np.corrcoef(part1, part2))[0, 1]

bands_info.append(coeff.reshape([1,-1]))

coeff_info = np.vstack((bands_info[0], bands_info[1], bands_info[2],bands_info[3]))

改成这样就可以了。就是将初始矩阵在循环里在重新设定一遍,意思相当就是给了一次新的地址,再进行复制的话就不会覆盖前面的结果了。

希望本文所述对大家Python程序设计有所帮助。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值