python矩阵循环赋值_python关于矩阵重复赋值覆盖问题的解决方法

本文实例讲述了python关于矩阵重复赋值覆盖问题的解决方法。分享给大家供大家参考,具体如下:import itertools

import numpy as np

comb = list(itertools.combinations(list(range(regions)), 2))

bands_info = []

coeff = np.zeros([bands, len(comb)])

for cla in range(classes):

class_info = data[:,cla*bands*regions:(cla+1)*bands*regions]

for bs in range(bands):

n = bs*regions

for i in range(len(comb)):

index1 = comb[i][0]+n

index2 = comb[i][1]+n

part1 = class_info[:, index1]

part2 = class_info[:, index2]

coeff[bs, i] = (np.corrcoef(part1, part2))[0, 1]

bands_info.append(coeff.reshape([1,-1]))

coeff_info = np.vstack((bands_info[0], bands_info[1], bands_info[2],bands_info[3]))

例如这个循环赋值过程,最终得出来的结果是bands_info这个List里面每一个矩阵都是一样的,这是为什么呢?我一开始也在这里纠结了很长时间,思来想去感觉没错的呀。后来想想以前学的C语言知识,才有点明白。原来python里面有浅层copy和深层copy这一说,同是一个矩阵的话占用的是同一个地址,在里面进行重复赋值的话前面的值都会被覆盖掉。不只是当前变量被覆盖掉,就是你之后用到这个变量的也会被覆盖。比如说你a的变量被b覆盖了,那你后面用到a的变量的地方,a的值也会变成b的值。是不是很可怕。

那么应该怎么进行修改呢?import itertools

import numpy as np

comb = list(itertools.combinations(list(range(regions)), 2))

bands_info = []

for cla in range(classes):

coeff = np.zeros([bands, len(comb)])

class_info = data[:,cla*bands*regions:(cla+1)*bands*regions]

for bs in range(bands):

n = bs*regions

for i in range(len(comb)):

index1 = comb[i][0]+n

index2 = comb[i][1]+n

part1 = class_info[:, index1]

part2 = class_info[:, index2]

coeff[bs, i] = (np.corrcoef(part1, part2))[0, 1]

bands_info.append(coeff.reshape([1,-1]))

coeff_info = np.vstack((bands_info[0], bands_info[1], bands_info[2],bands_info[3]))

改成这样就可以了。就是将初始矩阵在循环里在重新设定一遍,意思相当就是给了一次新的地址,再进行复制的话就不会覆盖前面的结果了。

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数算总结》、《Python数据结构与算法教程》、《Python函数使用总结》、《Python字符串操作汇总》及《Python入门与进阶经典教程》

希望本文所述对大家Python程序设计有所帮助。

### Python矩阵判断和赋值 #### Numpy 矩阵判断与赋值 在 `NumPy` 库中,可以方便地进行矩阵的操作。对于矩阵的判断以及赋值操作,通常会涉及到条件表达式的应用。 当需要基于某些条件对矩阵中的元素进行修改时,可以直接利用布尔索引的方式完成这一过程: ```python import numpy as np matrix = np.array([[1, 2], [3, 4]]) condition_matrix = matrix > 2 # 创建一个条件矩阵,其中包含True/False值 print(condition_matrix) # 输出: [[False False] # [ True True]] ``` 如果想要根据特定条件给定新值,则可以通过如下方式实现: ```python matrix[condition_matrix] = 0 # 将满足条件的位置设置为指定的新值,在这里是0 print(matrix) # 输出: [[1 2] # [0 0]] ``` 上述代码展示了如何通过布尔掩码来进行高效的元素级操作[^1]。 #### Pandas 数据框内的矩阵判断与赋值 而在 `Pandas` 的 `DataFrame` 对象里同样支持类似的逻辑运算符用于筛选数据,并允许按照这些条件更新原有表格的内容。 下面的例子说明了怎样在一个 `DataFrame` 内查找符合条件的数据并对其进行更改: ```python import pandas as pd df = pd.DataFrame({ 'A': [1, 2], 'B': [3, 4] }) mask = df['A'] >= 2 # 定义一列上的过滤条件 df.loc[mask, :] = 0 # 修改所有匹配行的所有列 print(df) # 结果显示被替换后的数据表 ``` 这里使用了 `.loc[]` 方法配合布尔向量实现了更灵活的选择和编辑功能[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值