梯度的旋度为零证明_《散度、旋度、梯度释义》阅读笔记

12c0490578edaeb2d47809b9734c1702.png

书名:《散度、旋度、梯度释义》

原书:Div, Grad, Curl, and All That: An Informal Text on Vector Calculus

定义

散度:

旋度:

其中,​

为封闭曲线C​所在平面S(面积趋于0时,S无限接近于一个平面)的法向。

梯度:

定理

散度定理:一个向量函数在某个封闭面S上的通量等于该函数的散度在此封闭面所围成的体积V上的积分。

斯托克斯定理:一个向量函数在某个封闭曲线C上的环积分等于该函数的旋度在曲面S上的通量。其中曲面S为覆盖C的任意盖状面。

在二维空间中,散度定理和斯托克斯定理是等价的。二维时的特例也被称为格林公式。一维时的特例是微积分基本定理。

线积分、梯度和旋度的关系

  1. 路径独立

一般情况下,1与2等价,均可推导出3。在单连通区域中,1,2,3三者等价。

应用(计算静电场的电场强度E)

由于静电场环路定理对任意封闭曲线​C成立(​

路径独立)。可知存在函数​
,使得​
成立。由高斯定理的微分形式可得泊松方程

在空间中任一没有电荷的点处,电荷密度

​为0,可得拉普拉斯方程

若已知某些边界条件,便可对方程进行求解。

其他

高斯定理:

高斯定理的微分形式:

向心力:

定义:(1) 力的大小仅取决于两个粒子之间的距离,(2) 力的方向沿两个粒子的连线方向。

性质:对于任何向心力,​

都是路径独立的。(不是向心力也可能有路径独立的线积分)

静电场环路定理:

通量:

环积分:

计算面积、体积:

一个习题

前提定理:

从麦克斯韦方程组中的一个方程可知

这里​

是任意磁场。那么应用散度定理,可以发现

因为​

的散度为0,由前提定理,可知存在一个向量函数,称之为​
,使得将上面两个方程合在一起,有

下面应用斯托克斯定理和前面的结论可以得到

因此证明了​

的环积分是路径独立的。它遵循​,这里​是某个标量函数。由于一个函数的梯度的旋度为0,显然

即所有的磁场均为0!这显然是错误的,那么哪里弄错了呢?[来源 G. Arfken, Amer. J. Phys. , 27, 526 (1959)]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值