python123测试4四位玫瑰数_【译】技能测试解决方案:Python中的数据科学(四)...

这篇博客详细解析了Python中数据科学的一些技能测试问题,涵盖了数据类型检查、空值处理、布尔运算、数据操作和转换等多个方面,帮助读者理解pandas库在数据处理中的应用。
摘要由CSDN通过智能技术生成

A1:B

解释:“分类型”变量的数据类型为“object”。

A2:C

解释:函数“unique”可以找出指定变量不同的取值。

A3:C

解释:函数“isnull()”可以检验某个变量的每个取值是否是空值。在Python2.7版本中,1和0分别表示True和False,因此,把它们加起来就是我们想要的结果。

A4:A

解释:“~”运算符为取反运算符。

A5:C

解释:如果打算删除5行或5行以上的变量, “dropna” 函数中 “thresh”参数应该设定为样本量减5。

A6:B

解释:解决方案分两步:

构造一个映射字典;

把这个映射字典应用于替代函数。

A7:D

解释:解决这个问题应注意:

“&”运算符可以实现提取复合布尔索引数据;

“shape[0]”返回总样本量;

Python大小写敏感。

A8:D

解释:这是一个集合论的经典案例。

A9:B

解释:可以参考map与apply函数之间的区别。

A10:B

解释:(无)。

A11:B

解释:首先求出字符中的数字,再求数字的平均值。

A12:B

解释:列表中的最后一个元素,可以用“-1”作为索引。

A13:B

解释:首先用“Sex”变量对数据集进行分组,再用合适的值对缺失值进行填充。

A14:B

解释:(无)。

A15:B

解释:如前所述,布尔变量的True可以用1代替。

A16:C

解释:如果打算把布尔型变量值转换成整型,可以用“astype(int)”实现。

A17:C

解释:可以用pandas中的“names”参数来指定列名。

A18:B

解释:“category”数据类型是pandas新增特性。

A19:B

解释:在pandas中可以通过“str”函数来获取字符串函数。

A20:B

解释:(无)。

A21:D

解释:“corr”函数中 “method”参数的默认值为“pearson”。

A22:B

解释:可以参考pivot_table函数和pivot函数的区别。

A23:C

解释:(无)。

A24:A

解释:(无)。

A25:B

解释:(无)。

A26:B

解释:(无)。

A27:B

解释:(无)。

A28:B

解释:(无)。

A29:A

解释:(无)。

A30:C

解释:(无)。

A31:C

解释:(无)。

A32:B

解释:(无)。

A33:D

解释:(无)。

A34:D

解释:(无)。

A35:B

解释:(无)。

A36:C

解释:(无)。

A37:B

解释:“axis=1”可以对列进行操作,而 “axis=0”则对行进行操作。

A38:C

解释:(无)。

A39:A

解释:(无)。

A40:B

解释:(无)。

A41:D

解释:(无)。

A42:C

解释:(无)。

A43:C

解释:(无)。

A44:A

解释:(无)。

A45:B

解释:(无)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值