knn pytorch_在TPU上运行PyTorch的技巧总结

TPU芯片介绍

Google定制的打机器学习专用晶片称之为TPU(Tensor Processing Unit),Google在其自家称,由于TPU专为机器学习所运行,得以较传统CPU、 GPU降低精度,在计算所需的电晶体数量上,自然可以减少,也因此,可从电晶体中挤出更多效能,每秒执行更复杂、强大的机器学习模组,并加速模组的运用,使得使用者更快得到答案,Google最早是计划用FPGA的,但是财大气粗,考虑到自己的特殊应用,就招了很多牛人来做专用芯片TPU。

54e16a5550902959ccd245e8f9a7d5ea.png

TPUs已经针对TensorFlow进行了优化,并且主要用于TensorFlow。但是Kaggle和谷歌在它的一些比赛中分发了免费的TPU时间,并且一个人不会简单地改变他最喜欢的框架,所以这是一个关于我在GCP上用TPU训练PyTorch模型的经验的备忘录(大部分是成功的)。

25354d9432ba0df5ff36509d9cd6da0c.png

PyTorch/XLA是允许这样做的项目。它仍在积极的开发中,问题得到了解决。希望在不久的将来,运行它的体验会更加顺畅,一些bug会得到修复,最佳实践也会得到更好的交流。

https://github.com/pytorch/xla

设置

这里有两种方法可以获得TPU的使用权

GCP计算引擎虚拟机与预构建的PyTorch/XLA映像并按照PyTorch/XLA github页面上的"使用预构建的计算VM映像"部分进行设置。

或者使用最简单的方法,使用google的colab笔记本可以获得免费的tpu使用。

针对一kaggle的比赛您可以在虚拟机上使用以下代码复制Kaggle API令牌并使用它下载竞争数据。还可以使用gsutil cp将文件复制回GS bucket。

gcloud auth logingsutil cp gs://bucket-name/kaggle-keys/kaggle.json ~/.kagglechmod 600 ~/.kaggle/kaggle.jsonkaggle competitions download -c recursion-cellular-image-classification

除了谷歌存储之外,我还使用github存储库将数据和代码从我的本地机器传输到GCP虚拟机,然后再返回。

注意,在TPU节点上也有运行的软件版本。它必须匹配您在VM上使用的conda环境。由于PyTorch/XLA目前正在积极开发中,我使用最新的TPU版本:

619a12b0cfc6a9774b666d76342bcadd.png

使用TPU训练

让我们看看代码。PyTorch/XLA有自己的多核运行方式,由于TPUs是多核的,您希望利用它。但在你这样做之前,你可能想要把你的模型中的device = ' cuda '替换为

import torch_xla_py.xla_model as xm...device = xm.xla_device()...xm.optimizer_step(optimizer)xm.mark_step()

仅在TPU的一个核上测试您的模型。上面代码片段中的最后两行替换了常规的optimizer.step()调用。

对于多核训练,PyTorch/XLA使用它自己的并行类。在这里的测试目录中可以找到一个使用并行训练循环的示例(https://github.com/pytorch/xla/blob/master/test/testtrainmnist.py)

我想强调与它相关的以下三点。

1) DataParallel并行持有模型对象的副本(每个TPU设备一个),并以相同的权重保持同步。你可以通过访问其中一个模型进行保存,因为权重都是同步的:

torch.save(model_parallel._models[0].state_dict(), filepath)

每个并行内核必须运行相同批数量,并且只允许运行完整批。因此,每个历元在小于100%的样本下运行,剩余部分被忽略。对于数据集变换,这对于训练循环来说不是大问题,但对于推理来说却是个问题。如前所述,我只能使用单核运行进行推理。

直接在jupyter笔记本上运行的DataParallel代码对我来说非常不稳定。它可能运行一段时间,但随后会抛出系统错误、内核崩溃。运行它作为一个脚本似乎是稳定的,所以我们使用以下命令进行转换

!jupyter nbconvert --to script MyModel.ipynb!python MyModel.py

工作的局限性

PyTorch/XLA的设计导致了一系列PyTorch功能的限制。事实上,这些限制一般适用于TPU设备,并且显然也适用于TensorFlow模型,至少部分适用。具体地说

张量形状在迭代之间是相同的,这也限制了mask的使用。

应避免步骤之间具有不同迭代次数的循环。

不遵循准则会导致(严重)性能下降。 不幸的是,在损失函数中,我需要同时使用掩码和循环。 就我而言,我将所有内容都移到了CPU上,现在速度要快得多。 只需对所有张量执行 my_tensor.cpu().detach().numpy() 即可。 当然,它不适用于需要跟踪梯度的张量,并且由于迁移到CPU而导致自身速度降低。

性能比较

我的Kaggle比赛队友Yuval Reina非常同意分享他的机器配置和训练速度,以便在本节中进行比较。 我还为笔记本添加了一列(这是一台物理机),但它与这些重量级对象不匹配,并且在其上运行的代码未针对性能进行优化。

网络的输入是具有6个通道的512 x 512图像。 我们测量了在训练循环中每秒处理的图像,根据该指标,所描述的TPU配置要比Tesla V100好得多。

4c6e79eb62eff59e2a4d5a671b9c53c6.png

如上所述(不带DataParallel)的单核TPU的性能为每秒26张图像,比所有8个核在一起的速度慢约4倍。

由于竞争仍在进行中,我们没有透露Yuval使用的体系结构,但其大小与resnet50并没有太大差异。 但是请注意,由于我们没有运行相同的架构,因此比较是不公平的。

尝试将训练映像切换到GCP SSD磁盘并不能提高性能。

总结

总而言之,我在PyTorch / XLA方面的经验参差不齐。 我遇到了多个错误/工件(此处未全部提及),现有文档和示例受到限制,并且TPU固有的局限性对于更具创意的体系结构而言可能过于严格。 另一方面,它大部分都可以工作,并且当它工作时性能很好。

最后,最重要的一点是,别忘了在完成后停止GCP VM!

a5968e1ec126a6f674c9386f3cc29554.png

作者:Zahar Chikishev

deephub翻译组

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
对于K最近邻(K-Nearest Neighbors,KNN)算法在PyTorch中的实现,您可以按照以下步骤进行: 1. 准备数据:首先,您需要准备用于训练和测试的数据。确保将数据转换为PyTorch张量。 2. 定义距离度量:KNN算法基于距离来计算样本之间的相似性。在PyTorch中,您可以使用torch.cdist函数来计算两个张量之间的距离。选择适当的距离度量方法,例如欧氏距离或曼哈顿距离。 3. 训练模型:由于KNN是一种"懒惰"学习方法,它不需要训练阶段。相反,它在测试阶段实时计算最近邻。 4. 测试模型:对于每个测试样本,您需要计算其与训练样本的距离,并选择最近的K个邻居。通过多数表决法确定测试样本的类别。 下面是一个简单的示例代码,演示了如何在PyTorch中实现KNN算法: ```python import torch from torch import nn class KNN: def __init__(self, k): self.k = k def fit(self, X_train, y_train): self.X_train = X_train self.y_train = y_train def predict(self, X_test): dists = torch.cdist(X_test, self.X_train) # 计算测试样本与训练样本之间的距离 _, indices = dists.topk(self.k, dim=1, largest=False) # 选择最近的K个邻居 k_nearest_labels = self.y_train[indices] # 获取K个邻居的标签 predicted_labels = torch.mode(k_nearest_labels, dim=1).values.squeeze() # 多数表决法确定预测标签 return predicted_labels ``` 示例中的KNN类包含了fit和predict方法。fit方法用于传入训练数据,predict方法用于对新的测试数据进行预测。 这只是一个简单的示例,您可以根据自己的需求进行修改和扩展。希望对您有所帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值