薛定谔方程,是由奥地利物理学家薛定谔在1926年提出的量子力学中的一个基本方程,薛定谔方程也是量子力学的一个基本假定,其正确性只能靠实验来检验。
它揭示了微观物理世界物质运动的基本规律,就像牛顿定律在经典力学中所起的作用一样,它是原子物理学中处理一切非相对论问题的有力工具,在原子、分子、固体物理、核物理、化学等领域中被广泛应用。然而,时至今日,近百年来,人类还只能得出氢原子的薛定谔方程的精确解,对于多电子原子的薛定谔方程的精确解,人类显得束手无策;但是,人类一直不断通过近似解去接近精确解,尽管困难重重,但科学的探究不就是这样,在不断突破极限中勇攀高峰吗?

接下来,我们就将简单回顾一下,自2020年以来科学家关于对多电子薛定谔方程精确解的研究。
九十年前的挑战:现在可以解了吗?
1.PNAS:来自90年前的挑战—解薛定谔方程特征值的下界
厄米算子特征值的里兹上界在科学中的许多应用中都是必不可少的。它是量子化学和物理计算的主要内容。1928年由坦普尔设计的下限则不成立,因为它收敛得太慢。对一个好的下界定理和算法的需要不能被夸大,因为一个上界单独是不足以确定特征值之间的差异,如隧道分裂和光谱特征。此文中,经过90年的发展,来自以色列魏茨曼科学研究所的Eli Pollak等人,对Temple的下界进行了推广和改进。给出了非平凡格点模型哈密顿数的基于Lanczos三对角化的数值例子,证明了在13个数量级范围内的收敛性。这个下界通常至少比Temple的结果好一个数量级。它的收敛速度与里兹上界的收敛速度相当。它并不局限于基态。这些结果补充了里兹的上界,并可将下界的计算转化为物理和化学中主要的特征值和谱问题。