布隆过滤器

布隆过滤器

什么是布隆过滤器?

  • 布隆过滤器(Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都比一般的算法要好的多,缺点是有一定的误识别率和删除困难

设计概念

  • 如果判断一个元素是否在集合中,一般思路可以是将所有的元素保存起来,然后通过比较确定。但是随着数据量的增加我们需要的存储空间也越来越大,检索速度也越来越慢。此时可以使用到hash表的数据结构。可以通过hash函数将一个元素映射到位阵列(bit array)中的一个点。这样我们只要判断这个点是不是1就可以知道集合中存不存在某元素。
  • 使用hash算法,免不了会有冲突,为了解决冲突就只能通过增加散列表的空间大小,导致空间利用率不高,此时还有一种方式就是增加hash函数的数量。通过多个hash函数,判断元素是否存在,如果有一个判断为0(即不存在),则判断此元素在集合中是不存在的。但是避免不了有误判的可能。
  • Bloom Filter跟单哈希函数Bit-Map不同之处在于:Bloom Filter使用了k个哈希函数,每个字符串跟k个bit对应。从而降低了冲突的概率。

核心思想

  • 多个hash函数,增加随机性,减少hash碰撞的概率。
  • 扩大数组范围,使hash值均匀分布,减少hash碰撞的概率。

Bloom Filter实现:

  • 布隆过滤器有许多实现与优化,Guava中就提供了一种Bloom Filter的实现。
  • 在使用bloom filter时,绕不过的两点是预估数据量n以及期望的误判率fpp,
  • 在实现bloom filter时,绕不过的两点就是hash函数的选取以及bit数组的大小。
  • 对于一个确定的场景,我们预估要存的数据量为n,期望的误判率为fpp,然后需要计算我们需要的Bit数组的大小m,以及hash函数的个数k,并选择hash函数
    (1)Bit数组大小选择
    根据预估数据量n以及误判率fpp,bit数组大小的m的计算方式:
    在这里插入图片描述
    (2)哈希函数选择
    ​ 由预估数据量n以及bit数组长度m,可以得到一个hash函数的个数k:
    在这里插入图片描述
    哈希函数的选择对性能的影响应该是很大的,一个好的哈希函数要能近似等概率的将字符串映射到各个Bit。选择k个不同的哈希函数比较麻烦,一种简单的方法是选择一个哈希函数,然后送入k个不同的参数。
    哈希函数个数k、位数组大小m、加入的字符串数量n的关系可以参考Bloom Filters - the math,Bloom_filter-wikipedia

使用时引入Google提供的guava包

 <dependency>
            <groupId>com.google.guava</groupId>
            <artifactId>guava</artifactId>
            <version>23.0</version>
 </dependency>    

测试分两步:
1、往过滤器中放一百万个数,然后去验证这一百万个数是否能通过过滤器
2、另外找一万个数,去检验漏网之鱼的数量

package com.weidd.best.redis;

import com.google.common.hash.BloomFilter;
import com.google.common.hash.Funnels;

/**
 * @program: SortDemo
 * @author: weidd
 * @date: 2021-06-15 13:53
 *
 * 测试布隆过滤器,(用于解决redis穿透)
 **/
public class BloomFiler {

    private static int total = 1000000;
    private static BloomFilter<Integer> bf = BloomFilter.create(Funnels.integerFunnel(), total);
//    private static BloomFilter<Integer> bf = BloomFilter.create(Funnels.integerFunnel(), total, 0.003);

    public static void main(String[] args) {
        // 初始化1000000条数据到过滤器中
        for (int i = 0; i < total; i++) {
            bf.put(i);
        }

        // 匹配已在过滤器中的值,是否有匹配不上的
        for (int i = 0; i < total; i++) {
            if (!bf.mightContain(i)) {
                System.out.println("有坏人逃脱了~~~");
            }
        }

        // 匹配不在过滤器中的10000个值,有多少匹配出来
        int count = 0;
        for (int i = total; i < total + 10000; i++) {
            if (bf.mightContain(i)) {
                count++;
            }
        }
        System.out.println("误伤的数量:" + count);
    }

}

运行结果:
在这里插入图片描述
运行结果表示,遍历这一百万个在过滤器中的数时,都被识别出来了。一万个不在过滤器中的数,误伤了320个,错误率是0.03左右。

看下BloomFilter的源码:
public static <T> BloomFilter<T> create(Funnel<? super T> funnel, int expectedInsertions) {
        return create(funnel, (long) expectedInsertions);
    }  

    public static <T> BloomFilter<T> create(Funnel<? super T> funnel, long expectedInsertions) {
        return create(funnel, expectedInsertions, 0.03); // FYI, for 3%, we always get 5 hash functions
    }

    public static <T> BloomFilter<T> create(
          Funnel<? super T> funnel, long expectedInsertions, double fpp) {
        return create(funnel, expectedInsertions, fpp, BloomFilterStrategies.MURMUR128_MITZ_64);
    }

    static <T> BloomFilter<T> create(
      Funnel<? super T> funnel, long expectedInsertions, double fpp, Strategy strategy) {
     ......
    }

BloomFilter一共四个create方法,不过最终都是走向第四个。看一下每个参数的含义:
funnel:数据类型(一般是调用Funnels工具类中的)
expectedInsertions:期望插入的值的个数
fpp 错误率(默认值为0.03)
strategy 哈希算法(我也不懂啥意思)Bloom Filter的应用
在最后一个create方法中,设置一个断点:
在这里插入图片描述

上面的numBits,表示存一百万个int类型数字,需要的位数为7298440,700多万位。理论上存一百万个数,一个int是4字节32位,需要481000000=3200万位。如果使用HashMap去存,按HashMap50%的存储效率,需要6400万位。可以看出BloomFilter的存储空间很小,只有HashMap的1/10左右
上面的numHashFunctions,表示需要5个函数去存这些数字
使用第三个create方法,我们设置下错误率:

private static BloomFilter<Integer> bf = BloomFilter.create(Funnels.integerFunnel(), total, 0.0003);

复制代码再运行看看:
在这里插入图片描述
当错误率设为0.0003时,所需要的位数为16883499,1600万位,需要12个函数
和上面对比可以看出,错误率越大,所需空间和时间越小,错误率越小,所需空间和时间越大

常见的几个应用场景:

  • cerberus在收集监控数据的时候, 有的系统的监控项量会很大, 需要检查一个监控项的名字是否已经被记录到db过了, 如果没有的话就需要写入db.
  • 爬虫过滤已抓到的url就不再抓,可用bloom filter过滤
  • 垃圾邮件过滤。如果用哈希表,每存储一亿个 email地址,就需要 1.6GB的内存(用哈希表实现的具体办法是将每一个 email地址对应成一个八字节的信息指纹,然后将这些信息指纹存入哈希表,由于哈希表的存储效率一般只有 50%,因此一个 email地址需要占用十六个字节。一亿个地址大约要 1.6GB,即十六亿字节的内存)。因此存贮几十亿个邮件地址可能需要上百 GB的内存。而Bloom Filter只需要哈希表 1/8到 1/4 的大小就能解决同样的问题。

优缺点:

优点:

  • 相比其他的数据结构,布隆过滤器的空间及时间方面的优势是巨大的。存储空间和插入、查询时间都是常数。
  • hash函数之间是没有关系的,方便由硬件并行实现。
  • 布隆过滤器本身不需要存储元素本身,数据安全性较高。

缺点:

  • 存在一定的误判率,不能100%判断元素是否真的存在。(如果bloom filter中存储的是黑名单,那么可以通过建立一个白名单来存储可能会误判的元素。)
  • 不能删除。(因为不知道某一个位置上代表的是否还有其他的元素)

BloomFilter的应用

  • K-V系统快速判断某个key是否存在
    典型的例子有Hbase,Hbase的每个Region中都包含一个BloomFilter,用于在查询时快速判断某个key在该region中是否存在,如果不存在,直接返回,节省掉后续的查询。
  • 黑名单
    比如邮件黑名单过滤器,判断邮件地址是否在黑名单中
  • 排序(仅限于BitSet)
    仔细想想,其实BitSet在set(int value)的时候,“顺便”把value也给排序了。
  • 网络爬虫
    判断某个URL是否已经被爬取过
  • 缓存穿透
  • 集合元素重复的判断
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

benboerdong

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值