正弦定理和余弦定理_正弦定理和余弦定理的综合应用

《正弦定理和余弦定理的应用》是高考的必考内容。在知识上也是三角公式及变换的延续和应用,也是正弦定理、余弦定理、三角形面积公式的运用和拓展。本节课是给高一同学准备的一节新授课,选择了三个比较常见且典型的题型,意在让学生们进一步熟练应用正余弦定理的边角互化作用解决(1)三角函数式的证明(2)解三角形(3)判断三角形形状等问题。

bf03c177af9382227da9db8e86043690.png

760b7134657a21994776af17a8fc4c4a.png

122fb2b964371b7583d580f7c116c308.png

dd341839bc949bb403d38f0bc6a213d3.png

454cd1c6f75def30e9642597eaa01552.png

以上是基本知识点,同学们必须熟记,并且做到熟悉。这样在题目中我们碰见与之相关的结构会很快入手。还有就是公式的选择,特别是余弦定理和三角形面积公式的选择,都要额外留意题目中的涉及的角度,就是我们后面提到的“角”定,“公式”定。

9738b4adb580ddec0eb1fcf6a35a104e.png

     这道题目的还有一个问题就是可不可以“角化边”,答案是可以的。我们思考一下发现如果“角化边”要进行6次,在计算上略微麻烦于我们给出的“边化角”解法。

6e6fb562f6dfaeaf994628ac8de3a3ab.png

ff9e0e93ba8294510eb89297ff9a951d.png

4f9a7c2d6cedebf143c5d78183bdd593.png

这道题的证明我们给出三种证法,第三种给出了证明需要的图形,相信大家很容易就想到证明的思路。这道题目选自课本课后题,不仅很好的练习了边角互换的技巧,同时题干本身就是快速的“边角互化”式--射影定理,如果是小题,我们可以直接用,快速解题。可以看一下课下作业的第一小题。

00e047566fcd44c62b110fe913627f8d.png

cedda684f436b63d84f684b3887c3714.png

例3的一个关键点,就是从第一个已知式中推得角A的余弦值,这就要求我们书写余弦定理的结构,在推得角A后,我们选择了与之有关的面积公式。

fd49247a47fbebdf5637fb2772077bc5.png

62cbe70c0de4563edf31a74cf7c34cba.png

这道题目有的同学会具体解出a,c的值,但是结合我们这道题的所求,我们只需要求得ac这个乘积的整体值,而结合已知我们发现这个整体比较容易得到。

e5c678bd0c30805c17b93bff0da27e4b.png

例4我们给出的法一是倾向于余弦定理可以解决已知三边(或是三边的比例)求角的问题。思路相对简单,但是计算量稍微有点大,特别是对于高一学生把"比列系数K"当做已知数去解方程,相对难理解。所以又给出下列法二。

9e86fb2be6b14c05623d0dd0482104bf.png

法二依赖于我们对余弦定理的熟悉程度,在第二个已知式中我们能联想到这是和a边有关的余弦定理这是解题的关键。

b3b7780bfa05a3babbc4d485888082ab.png

019ba2ab7717b7f17ee225c40422f8ac.png

0e0dadf0103a54b4053c86bf270f8e24.png

a142daad95899462c721989658d83e6a.png

在上述的变形中有两步要注意的,第一是三角方程sin2A=sin2B,要注意角的取值范围,否则很注意丢解。第二就是在等式两边约去代数式,要进一步确认代数式有没有可能为0,否则也容易丢解。为了更好完成这类题目,并且注意到变形化简中的等价性,小于老师特意整理一下看上去十分类似的题目,不用记忆结论,重在化简计算。

3bf1863d8df714783ebf0d5e8fabd18d.png

cb980b2ff0fe35075fbc411a5bc5aabf.png

   如果对这节课的题目还有不清楚的地方,欢迎给小于老师留言。或是加QQ:2447915621,共同探讨。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值