当且仅当函数依赖a→b在r上成立_离散第8章:函数

b376607b454dc89cc5a930489fb6d081.png

第三篇:二元关系

第8章:函数

目录:

  • 1、函数的概念
  • 2、特殊函数
  • 3、函数的复合运算
  • 4、函数的逆运算
  • 5、函数的运算定理

eaa57d53caafe3ead89f7c28e6d055f8.png

fa35f2e14b0bf2ac7db42225b4964e12.png

一、函数的概念

  • 函数也叫映射、变换或对应
  • 离散数学的函数把高数里中连续函数推广到对离散量的讨论
  • 辨析函数与方程:从本质上,方程就是一个等式,而函数是一个对应关系
  • 在离散中,函数看作是一种特殊的二元关系
  • 计算机的任何输出都可看成是某些输入的函数。
  • 定义:设f是集合A到B的关系,如果对每个x∈A,都存在惟一的y∈B,使得<x,y>∈f,则称关系f为A到B的函数(Function)(或映射(Mapping)、 变换(Transform)),记为f:A→B。 A为函数f的定义域,记为domf=A; f(A)为函数f的值域,记为ranf。
    • (1)<x,y>∈f <=> y=f(x);
    • (2)<x,y>∈f∧<x,z>∈f <=> y=z;
    • (3)|f|=|A|;
    • (4)f(x)表示一个变值f代表一个集合,因此f≠f(x)。
    • (5)f(x)是B的子集,即B中有些元素跟A中不对应也可以
    • 如果关系f具备下列两种情况之一,那么f就不是函数:
      (1)存在元素a∈A,在B中没有象;
      (2)存在元素a∈A,有两个及两个以上的象。
  • 函数与关系的区别:函数是一种特殊的关系,它与一般关系比较具备如下差别:
    • 1)从A到B的不同的关系有2|A|×|B|个;但从A到B的不同的函数却仅有|B||A|(可以这样理解:每一个B中的元素都可以有|A|个A的元素匹配)个。 (个数差别)
    • 2)关系的第一个元素可以相同;函数的第一个元素一定是互不相同的。 (集合元素的第一个元素存在差别)
  1. 每一个函数的基数都为|A|个(|f|=|A|),但关系的基数却为从零一直到|A|×|B|。 (集合基数的差别)
  • 函数的类型:设f是从A到B的函数,
  • (1) 对任意x1,x2∈A,如果x1≠x2,有f(x1)≠f(x2), 则称f为从A到B的单射(不同的x对应不同的y);
    (2) 如果ranf=B,则称f为从A到B的满射
    (3) 若f是满射且是单射,则称f为从A到B的双射。A=B,则称f为A上的函数;当A上的函数f是双射时,称f为一个变换
    • (1)f:A→B是单射当且仅当对x1,x2∈A,若x1≠x2,则f(x1)≠f(x2);
    • (2)f:A→B是满射当且仅当对y∈B,一定存在x∈A,使得f(x)=y;
    • (3)f:A→B是双射当且仅当f既是单射,又是满射;
    • (4)f:A→B是变换当且仅当f是双射且A = B。
  • 函数类型结论:设A,B为有限集合,f是从A到B的函数,则:
    • f是单射的必要条件为|A|≤|B|;
    • f是满射的必要条件为|B|≤|A|;
    • f是双射的必要条件为|A|=|B|。
  • 定理8.2.1:设A,B是有限集合,且|A|=|B|,f是A到B的函数,则f是单射当且仅当f是满射。

58f96b27c2677200cb5335770be85590.png

e889d822cd5a4e1bfdf16c6579e978f3.png
  • 典型(自然)映射:设R是集合A上的一个等价关系,g:A→A/R称为A对商集A/R的典型(自然)映射,其定义为g(a)=[a]R,a∈A.
    • 典型映射是一个满射。因为每一个A中函数都对于A/R中的等价类
  • 例题:

cd61d1df84c6bcace978d017b3d1199c.png

二、常用函数:

  • (1)如果A = B,且对任意x∈A,都有f(x)=x,则称f为A上的恒等函数,记为IA。
  • (2)如果存在b∈B,且对任意x∈A,都有f(x)=b,则称f为常值函数。
  • (3)设A是全集U = {u1,u2,…,un}的一个子集,则子集A的特征函数定义为从U到{0,1}的一个函数,且

b9d7ebf0cf3c60084bf62806b49374be.png
  • (4)对有理数x,f(x)为大于等于x的最大的整数,则称f(x)为上取整函数(强取整函数),记为:

9f42f14dd6a54382f1ef1ecd26ca09da.png
  • (5)对有理数x,f(x)为小于等于x的最小的整数,则称f(x)为下取整函数(弱取整函数),记为:

f0d7bf62ed8b4c8ac90d8df14f2bfa59.png
  • (6)如果f(x)是集合A到集合B = {0,1}上的函数,则称f(x)为布尔函数

函数的应用:

ec1126b2b4d9b5da02b9cafd57d2e8e7.png

bd53eb802e6ff5bb766dd1f96db30578.png

1ee3ec13e6336cc0e67dba665f3acd26.png

122f61f910771d1ca2deefb99ca24164.png

函数的运算

三、函数的复合运算

  • 定义:考虑f:A→B,g:B→C是两个函数,则f与g的复合运算 fog = {<x,z>|x∈A∧z∈C∧ (存在y)(y∈B∧xfy∧ygz)} 是从A到C的函数,记为fog:A→C ,称为函数f与g的复合函数。
    • (1)函数f和g可以复合 <=> ranf 包含于domg;
    • (2)dom(fog) = domf, ran(fog) 包含于 rang
    • (3)对任意x∈A,有fog(x) = g(f(x))。
  • 函数的复合不满足交换律,但满足结合律。
  • 定理8.3.1:设f和g分别是A到B和从B到C的函数,则:
    • 如f,g是满射,则fog也是从A到C满射;
    • 如f,g是单射,则fog也是从A到C单射;
    • 如f,g是双射,则fog也是从A到C双射。

74ceca9371b5915e96c42d32066a9b34.png

7ed2df219b349f1b91d15f1a9f6cf249.png
  • 定理8.3.2:设f和g分别是从A到B和从B到C的函数,则
    • (1)如fog是从A到C的满射,则g是从B到C的满射;
    • (2)如fog是从A到C的单射,则f是从A到B的单射;
    • (3)如fog是从A到C的双射,则f是从A到B的单射,g是从B到C的满射。

32ad7c4c997fb101162f67dd1796a619.png

四、函数的逆运算

  • 定义:设f:A→B的函数。如果 f-1 = {<y,x>|x∈A∧y∈B∧<x,y>∈f} 是从B到A的函数,则称f-1:B→A是函数f的逆函数
    • 可以看出,一个函数的逆运算也是函数。即逆函数f-1存在当且仅当f是双射。

五、函数的运算定理

  • 定理8.3.3:设f是A到B的双射函数,则:
    • f-1of=IB={<b,b>|b∈B}
    • fof-1=IA={<a,a>|a∈A}
    • IAof=foIB=f
  • 定理8.3.4:若f是A到B的双射,则f的逆函数f-1也是B到A的双射。

be0326859e4dfed854a6ec074325023f.png

函数运算的应用:

  • 例子1:

76ca274682b785062f219bb6523f8b39.png

  • 例子2:

013f8f62dd510913aa2ddf83a10a7217.png

b601087020ae11130c4e309353e0e8b9.png

置换函数

  • 定义:设A={a1,a2,…,an}是有限集合。从A到A的双射函数称为A上的置换或排列(Permutation),记为P:A→A,n称为置换的阶(Order)。

93414ae93f9816071e09bc00dcde11e0.png

e1e8900d15d3ad3e14d245ee7f60051b.png

题:

  • 这里要注意y的范围是N,所以对于x>10的,没有定义

8b496bd43ca5ef5ab56fe718edfe83a6.png
  • 这里设x=±1即可

7a82a181d2a2c01f526722be69e39286.png
  • 这里之所以不是满射是因为当n+1=0时,不存在n=-1使该式子成立

dbfd03fd93f8811746361ceeedb1f445.png
  • 都不一定是,要注意函数的前提是A中的所有元素都有象,且序偶第一个元素不能重复

6c618c02c418519a084a358aafdaf0a1.png
  • 注意这里的lnx函数是一些离散点,因为dom是N-0

b7705d7db6ebb2aea58662aa001888ed.png
  • 上答案

c6d4cd12717a2a9043e3219fdc1d0ecf.png

e7b22acb7dd62951f1100483b8fcf6ec.png
  • 这里的O、E是奇、偶集

4f783c369f3a320a72376ab1eec357df.png
  • 证明题,上答案:

943aba0049a16d5e3ed8b73687796916.png

f71629585a40258831f913efa084301b.png
  • 上答案。。

ef3173a92d07d5598149015554373aca.png

3d81ce75e8225c1286bad9291117e43f.png

往期回顾

离散第6章:二元关系

离散第七章:特殊关系

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
©️2020 CSDN 皮肤主题: 1024 设计师:白松林 返回首页