本文可能是你能在网上找到的对svm参数解析最详细的一篇文章。写文源于之前使用到svm做攻击识别,一直纠结于一些函数的参数,对我个人自定义的一些偏好设定无法很好的完成,所以对其好好的研究了一番。这篇算是一篇工具文,来详解一下python sklearn中svm的一些参数,以及结合具体的例子来进行详细说明。
svm函数简介
sklearn中的svm基于libsvm,基础的svm函数大概如下所示,其中涉及到的参数很多,下面有一个简单的讲解:
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape=None, degree=3, gamma='auto', kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)
=========参数=============================
C:C-SVC的惩罚参数C?默认值是1.0,C越大,相当于惩罚松弛变量,希望松弛变量接近0,即对误分类的惩罚增大,趋向于对训练集全分对的情况,这样对训练集测试时准确率很高,但泛化能力弱。C值小,对误分类的惩罚减小,允许容错,将他们当成噪声点,泛化能力较强。
kernel :核函数,默认是rbf,可以是‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’
0 – 线性:u\'v
1 – 多项式:(gamma*u\'*v + coef0)^degree
2 – RBF函数:exp(-gamma|u-v|^2)
3 – sigmoid:tanh(gamma*u\'*v + coef0)
degree :多项式poly函数的维度,默认是3,选择其他核函数时会被忽略。
gamma : ‘rbf’,‘poly’和‘sigmoid’的核函数参数。默认是’auto’,如果是auto,则值为1/n_features
coef0 :核函数的常数项。对于‘poly’和 ‘sigmoid’有用。
probability :是否采用概率估计?.默认为False
shrinking :是否采用shrinking heuristic方法,默认为true
tol :停止训练的误差值大小,默认为1e-3
cache_size :核函数cache缓存大小,默认为200
class_weight :类别的权重,字典形式传递。设置第几类的参数C为weight*C(C-SVC中的C)
verbose :允许冗余输出
max_iter :最大迭代次数。-1为无限制。
deci