ADF单位根检验三种形式_Toda-Yamamoto 格兰杰因果检验 TY-Granger方法

本文详细介绍了格兰杰因果关系定义、检验方法及TY-Granger方法在E-Views中的应用步骤,强调了在非平稳数据和协整关系下的检验有效性。通过单位根检验确定数据积整阶数,然后在不同情况下选择VAR模型或ECM建模。文章还提及了后续发展的surplus-lag格兰杰因果检验方法。

一、格兰杰因果关系定义

对于因变量,找到有助于预测的协变量。

"X is said to Granger-causeY if Y can be better predicted using the histories of bothX and Y than it can by using the history of Y alone."

二、格兰杰因果检验

格兰杰因果检验本质是对VAR模型的参数进行线性约束的检验(一般为检验系数是否为0),它使用Wald检验。Wald检验有效,建立在统计量服从渐进卡方分布的假设下。如果该假设被破坏,则Wald检验非有效,格兰杰检验也非有效。

那么在什么条件下假设会被破坏?比如某些变量是非平稳的;出现非线性约束时;预检验技术效力低...

在这之前,我们回到一般步骤:数据预检验+建模格兰杰检验

首先,数据预检验:单位根检验(ADF PP检验),协整检验(Johansen检验)

其次,建模和格兰杰检验:以下有三种情况

第一种情况:变量们都存在单位根(经济数据一般是一阶单位根,或者是在0~1之间的分数积整),且不存在协整关系,那么做一阶差分处理后,差分数据应用VAR建模,这样在对VAR系数进行检验时,传统渐进理论是有效的。

第二种情况:都存在单位根,存在协整关系,在水平数据(没有经过差分的数据)上应用ECM建模,再进行系数检验。

第三种情况:不管变量是否平稳,不管变量间是否存在协整关系,我们可以直接在水平数据上应用Wald检验来检验线性或非线性约束。这就是Toda Yamamoto 方法,简称TY-Granger方法。

TY方法保证了统计量服从渐进卡方分布,保证了格兰杰因果检验的有效性。

三、TY-granger方法步骤(E-Views)

1、单位根检验:确定积整阶数。尽量进行交叉检验。令变量中最大的积整阶数为m(一般m=1)。

ce4ccaa3224af2d47a13b99a87a75a6d.png
单位根检验,只能一个一个变量地检验

2、确定最佳的VAR滞后阶数:

将所有变量划为1组,设定为group01.

9f46f4abaf61d90321fc51973b454fca.png
这个使得构造VAR很方便

在原水平数据上进行VAR建模。滞后阶数设定为20(

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值