计算机与科学唐家琪,基于网络分析的蛋白质功能预测方法研究

摘要:

蛋白质是执行生物体内各种重要生物活动的大分子,认识其功能对推动生命科学、农业、医疗等领域的发展意义重大。传统的生物实验测定蛋白质的功能需要消耗大量的人力、物力、财力,并且效率低下,已无法满足数量日益增长的蛋白质序列的功能注释。故需要通过计算的方法预测蛋白质的功能,为生物实验提供理论指导,从而降低实验成本。随着高通量生物实验技术的发展,产生了海量的蛋白质相互作用(Protein-Protein Interaction,PPI)数据,基于蛋白质相互作用网络(简称PPI网络)的功能预测方法受到了越来越多研究者的关注,已成为后基因组时代生物信息学的一个研究热点。本文针对基于PPI网络的蛋白质功能预测方法展开研究,主要内容如下:(1)提出一种基于机器学习(层次聚类、主成分分析和多层感知器)的蛋白质功能预测方法HPMM。该方法综合考虑蛋白质宏观和微观层面的信息,将蛋白质家族、结构域和重要位点信息作为顶点属性整合到PPI网络中以减轻网络中数据噪声的影响。首先,基于层次聚类和主成分分析进行特征提取,得到功能模块和属性主成分特征,然后训练多层感知器模型,建立多特征与多功能之间的映射关系以用于功能预测。在三个分别被分子功能、生物过程和细胞组件注释的人类PPI网络上进行测试,对HPMM、余弦迭代算法(CIA)和有向PPI网络基因本体术语传播(GoDIN)算法的功能预测效果进行比较分析。实验结果表明,相较于CIA和GoDIN这两种完全基于PPI网络的方法,HPMM的微正确率、微查准率与微F1更高。(2)提出了双加权投票蛋白质功能预测算法BiWV。该算法通过构建蛋白质影响权重矩阵和功能影响权重矩阵,分别从蛋白质和功能术语角度进行加权投票来进行预测。在此基础上整合生物通路信息,提出带生物通路的双加权投票算法BiWV-P。在人类和酿酒酵母数据集进行测试和评价。实验结果显示,BiWV和BiWV-P能够有效预测蛋白质的功能,并且在多个数据集上微正确率与微F1均高于直推式多标签分类器(TMC),非平衡双随机游走(UBiRW),混合图上随机游走蛋白质功能预测(ProHG)这三种同类方法。综上所述,本文基于网络分析对蛋白质功能预测方法进行研究,提出了基于机器学习的蛋白质功能预测方法HPMM、基于双加权投票的蛋白质功能预测算法BiWV及带生物通路的双加权投票算法BiWV-P。在多个指标和数据集上的实验结果表明,本文提出的方法能够有效预测蛋白质的功能,为生物实验提供理论指导。

展开

内容概要:本文详细介绍了基于结构不变补偿的电液伺服系统低阶线性主动干扰抑制控制(ADRC)方法的实现过程。首先定义了电液伺服系统的基本参数,并实现了结构不变补偿(SIC)函数,通过补偿非线性项和干扰,将原始系统转化为一阶积分链结构。接着,设计了低阶线性ADRC控制器,包含扩展状态观测器(ESO)和控制律,用于估计系统状态和总干扰,并实现简单有效的控制。文章还展示了系统仿真对比实验,对比了低阶ADRC传统PID控制器的性能,证明了ADRC在处理系统非线性和外部干扰方面的优越性。此外,文章深入分析了参数调整稳定性,提出了频域稳定性分析和b0参数调整方法,确保系统在参数不确定性下的鲁棒稳定性。最后,文章通过综合实验验证了该方法的有效性,并提供了参数敏感性分析和工程实用性指导。 适合人群:具备一定自动化控制基础,特别是对电液伺服系统和主动干扰抑制控制感兴趣的科研人员和工程师。 使用场景及目标:①理解电液伺服系统的建模控制方法;②掌握低阶线性ADRC的设计原理和实现步骤;③学习如何通过结构不变补偿简化复杂系统的控制设计;④进行系统仿真实验验证,评估不同控制方法的性能;⑤掌握参数调整稳定性分析技巧,确保控制系统在实际应用中的可靠性和鲁棒性。 阅读建议:本文内容详尽,涉及多个控制理论和技术细节。读者应首先理解电液伺服系统的基本原理和ADRC的核心思想,然后逐步深入学习SIC补偿、ESO设计、控制律实现等内容。同时,结合提供的代码示例进行实践操作,通过调整参数和运行仿真,加深对理论的理解。对于希望进一步探索的读者,可以关注文中提到的高级话题,如频域稳定性分析、参数敏感性分析等,以提升对系统的全面掌控能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值