和与余数的和同余理解_余数与同余问题

博客围绕余数同余问题展开,列举了众多相关计算示例,如已知被除数、除数、商和余数的和求除数,多个数被某数除余数相同的情况,以及利用同余性质计算周期问题等,涉及公务员考试中常见的同余计算场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

导读:余数 在公务员考试中,我们常常利用同余性质计算周期问题——已知某天,余数同余问题 1、 用一个自然数去除另一个自然数,不完全商是 8,余数是 16,被除数、除数、商、余数 这四个数的和为 463,那么除数为: 2、 57、96、148 被某自然数整除,余数相同

余数 在公务员考试中,我们常常利用同余性质计算周期问题——已知某天

余数同余问题 1、 用一个自然数去除另一个自然数,不完全商是 8,余数是 16,被除数、除数、商、余数 这四个数的和为 463,那么除数为: 2、 57、96、148 被某自然数整除,余数相同,且不为零,那么 284 被这个自然数除后余: 3、 150、232、396 被某个两位数除后都有余数,且余数都是同一个奇数,那么所得的余数 是: 4、 有一个自然数,用它分别去除 81、127、232 都有余数,且 3 个余数的和是 33,那么这 个自然数是: 5、 一个两位数去除 251,得到的余数是 41,这个两位数是: 6、 两个小于 100 的不同自然数去除 440,余数都是 35,这两个数的差为: 7、 一个两位数除以 8,商与余数相同,那么这样的数总和为: 8、 有一个除法算式,被除数、除数和商都是整数,且没有余数,被除数、除数、商相加的 和是 79,被除数和除数相差 56,这个算式是: 9、 一个整数,减去它除以 5 后所得余数的 4 倍,差是 234,这个自然数是: 10、2010 除以一个两位数 ab =( ) ,使所得余数最大。

11、 1)一个两位数被它的各位数字之和去除,能得到的最大余数是: 2)一个三位数被它的各位数字之和去除,能得到的最大余数是: 12、在大于 2010 的自然数中,逐个找出“被 49 除后,商与余数相等的数” ,这些数的和是: 13、用一个自然数 A 去除 333,商得 4,用所得余数去除自然数 B,所得商和余数相加恰好 为 A,那么 B 最小为: 14、两个数字之和为 10、8 的三位数乘积是一个五位数,且这个五位数的后四位是 1031, 那么这两位三位数之和是: 15、一个自然数除以 9 的余数和除以 8 的商的和等于 13,那么这个数除以 8 的余数是: 16、一个自然数除以 7 的余数和除以 8 的商的和等于 15,则满足条件的所有自然数的和是: 17、10 个自然数的和为 100,分别除以 3,若用去尾法,10 个商的和为 30,若用四舍五入 法,10 个商的和为 34,那么 10 个数中被 3 除余 1 的数有: 18、一个三位数分别被 63、95、143 除之后所得的余数之和为 19,那这个三位数是: 19、在小于 1000 的正整数中,被 12、15 和 18 除得余数相同的数共有: 20、若 M=3 +x ,当 x 取 1、2、3、„„、2010 时,能被 7 整除的 M 共有: 21、当 X 取 1、2、3、„„2010 时,有(n x 3)个整数 X 使 2 与 X 被 7 除余数相同。

)种取值。

x222、已知“2 -N”是一个 9 的倍数,那么 N 在 1000 以内的自然数中有( 23、已知 N 是从 1 到 100 的自然数,那么 1)有( 2)有( )个 N 的值满足 N -1 能被 7 整除; )个 N 的值满足 2 -1 能被 7 整除。

n 224、甲、乙、丙三数分别为 526、539、705,某数 A 除甲数所得余数是 A 除乙数所得余数 的 2 倍,A 除乙数所得余数与 A 除丙数所得余数的比是 2:3,那么 A 是: ( ) 25、 用一个大于 1 的自然数去除 963582、 714 所得的余数依次成等差数列, 那么除数可以是: 26、有一个三位数,它除以 19 所得到的商与余数之和,恰好等于它除以 17 所得到的商与余

数的和,那么这样的三位数最大可能是: 27、一个数除以 3 余 2,除以 5 余 3,除以 7 余 4,符合此条件的最小数为: 28、一个数除以 5 余 3,除以 6 余 4,除以 7 余 1,符合此条件的最小数为: 29、 1000 以内有 ( ) 个数除以 8 余 3, 除以 9 余 4, 除以 12 余 7, 其中最大的是 ( ) 30、有些自然数,它加 1 后是 3 的倍数,它的 3 倍加 1 后是 5 的倍数,它的 5 倍加 1 后是 7 的倍数,那么这样的自然数中,最小的一个是( ) 31、三个连续的两位数除以 5 的余数之和是 7,除以 7 的余数之和是 9,除以 9 的余数之和 是 15,则这三个数除以 11 的余数之和是: 32、一个自然数除以 7、8、9 后分别余 3、5、7,而所得三个决的和是 758,这个数是: 33、一个自然数除以 3、6、9 后所得 3 个余数之和是 15,那么这个数除以 18 的余数是: 34、一个五位数,各位数字互不相同,被 2、3、5、11 除分别余 1、2、3、7,那么这个数 最小是: 35、 “12 (345+67890”的个位数字是() ,除以 7 的余数是() ,除以 70 的余数是)1357936、算式“13579×2468+2468”的结果除以 9 余() ,除以 11 余() ,除以99 的余数是( ) 。

37、一批货物,如果用小车运,每次运 8 袋余 3 袋,每次运 6 袋余 1 袋,每次运 5 袋余 2 袋,如果改用大卡车,每车可以运 120 袋,则 4 次运完(每次尽量装满) ,那么这批货物共 有( )袋。

38、一个布袋中装有小球近 1000 个,如果每次取 9 个,最后剩 7 个,如果每次取 7 个,最 后剩 5 个,每次取 5 个最后剩 3 个,每次取 3 个最后剩 1 个。

那么如果每次取 13 个,最后 剩下( )个。

39、有四个互不相同的两位数,其中任意两数之和都是 2 的倍数,任意三数之和都是 3 的倍 数,那么这四个数之和最大为( ) ,最小为( ) 40、三个连续自然数,其中最小的能被 5 整除,中间的能被 7 整除,最大的能被 9 整除,那 么这三个自然数最小为( ) 41、N 是一个小于 3000 的四位数,将它除以 11 所得的余数为 5,除以 13 所得的余数为 6, 除以 17 所得的余数为 8,那么 N 的值是( ) 。

42、 把一个两位数的两个数字颠倒过来得到一个新两位数, 发现新两位数除以 7 的余数比原 两位数除以 7 的余数大 1,那这样的两位数共有( )个。

43、已知“□”代表一个正整数,并且“75+□”和“48+□”都不是 120 的倍数,但是这 两个数的乘积能被 120 整除,那么“□”所代表的数字最小可能是: ( ) 44、2010 45、90022009除以 2008 的余数为: 除以 2009 的余数是: ) ,除以 99 余( ) ,除以 1001 余( )900246、20112011„„2011 除以 105 余(2011 个 201147、 一个圆圈上有 200 多个小孔, 小明用一枚棋子像玩跳棋那样从 A 孔出发沿着顺时针方向 跳, 希望跳一圈能回到 A 孔; 如果每隔 6 孔跳一步, 结果能跳到 C 孔, 如果每隔 4 孔跳一步, 结果能跳到 B 孔,如果每隔 2 孔跳一步,结果能跳向 A 孔,那么这个圆圈上共有( )个 孔。

48、小明的妈妈买了葡萄、苹果、雪梨和芒果的果脯各若干袋(每种至少一袋) ,用了 340 元。

葡萄、苹果、雪梨和芒果果脯每袋售价分别为 14 元、22 元、28 元、42 元。

小明的妈 妈至少买了( )袋果脯,此时苹果果脯是( )袋。

49、 设 A=1+2+3+„„+2009+2010, 那么 A 除以 7 的余数是 ( ) , A 除以 77 的余数是 ( ) 。

50、从 1 写到 50,组成一个多位数 123456„„484950,该数除以 9、11、99 的余数分别是 ( ) 、 ( ) 、 ( ) 。

51、444444的数字之和为 A,A 的数字之和为 B,B 的数字之和 C,那么 C 是( 的末两位数字是( ) ( ))52、2009200953、 算式 “1×3×5×7ׄ„×2009×2011” 计算结果的末三位数字依次是 ( ) ( ) ( ) 。

54、三位数□37、8□4、21□,分别在百位、十位、个位被“□”盖住,现已知: 1)同一个三位数的 3 个数互不相同; 2) “□”盖住的数字互不相同,且不全是奇数; 3)三个三位数除以 12 余 3 个互不相同的质数,那么,这三个三位数的和为: ( ) 55、下图中的 7 张卡片里有 3 张上面的数是未知整数,这 3 个未知整数都是 3 的倍数,3 张 的和是 180,有 3 个学生,每人抽 2 张卡片,各自的 2 张卡片上的灵敏的和都彼此相同,那 么剩下的 1 张卡片上写的数是( ) 34 46 61 79 ? ? ?56、圆周上有 N 个点,固定其中一点写上数 1,按顺时针方向隔 1 个点,在下一个点处写 上数 2,按顺时针方向隔 2 个点,在下一个点处写上数 3, „„以此类推,多次后有些点上 会被写有多个数, 已知第 6 个点处写有 26, 在写有 6 的点上还写有 62, 那么 N 最大为 ( ) 。

57、将数字 1~9 各用一次组成 3 个三位数,使得三个灵敏被 9 除分别余 1、3、5,那么其 中最大的数与最小的数相差最小为( ) 。

58、A、B、C 这三个人都常去电影院,A 每隔 2 天去一次,B 每隔 6 天去一次,C 每隔 10 天 去一次,今天他们三人都去了电影院,将来会有连续 4 天恰好每天有一个人去,如果今天算 第一天,那么最早出现具有上述性质的连续 4 天是第( ) ( ) ( ) ( ) 。

59、小明每隔 2 天上一次英语课,每隔 3 天上一次数字课,每隔 4 天上一次写作课,如果小 明是在 7 月 1 日、2 日、3 日依次上了这 3 门课,那么此后他将在( )月( )日第一 次同时上这 3 门课。

60、在算式“○+119=□,□+143=△”中,已知“□、○、△”依次能被 7、9、11 整除的 自然数,那么△的最小值为( ) 61、有些三位数除以 2、3、4、5、6 所得到的余数互不相同,那么这样的三位数最小的三个 为( ) ( ) ( ) 62、一个两位数,用它分别除以 3、5、7 得到三个余数、这三个余数的和是 11,那么这样 的两位数是( ) 63、正整数 N 满足:N/2 是一个整数的平方,N/3 是一个整数的立方,N/5 是一个整数的 5 次方,那么 N 的最小值是( )可以用次方表示 64、自然数 N 满足:5 +N 是 9 的倍数,9 +N 是 5 的倍数,那么这样的 N 中最小值是(n n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值