networkx 有向图强连通_一道和有向图理论相关的题

给定正整数
,有N个人参加国际象棋比赛,每两个人恰好比赛一次,并且无平局.
表示x战胜y,已知若有M+1个人满足
,则有
.求证:可以将N个人编号为1,2,3,...,N,使得当
时,都有

我们注意有向图理论中的一个重要结论(作为引理使用):

引理1:无Hamilton圈的竞赛图G可以划分为两个非空子集X,Y,使得对于

,在G中均有
的边.

我们先考虑极端情况,假设存在一点u∈G使得对于所有

v∈G{u},均有
,则令X={u},Y=G{u}即可.假设存在一点u∈G使得对于所有
v∈G{u},均有
,则令Y={u},X=G{u}即可.

接下来考虑每一点都有入边和出边的情形.显见此时必然会形成圈,我们取其中边数最大的圈w:

.取x∈Gw,则:若存在
使得
,则会形成边数更大的圈,矛盾.故对于
,恒有
,设满足前者的点集为
,设满足前者的点集为
.

任取

.若
,则有
则会形成边数更大的圈,矛盾.

故恒有

,取X=
,Y=
,符合条件,引理得证.

以上引理是在学习有向图理论时应熟知的,下面我们证明一个与题目条件相关所出的引理:

引理2:没有长度大于M的圈.

若存在设为

,则这t个点构成强连通的子图,故由Moon定理必存在长为M+1的圈,与题设矛盾,引理得证.

回到原题:

不断使用引理一和引理二的结论,可以将G的顶点分为k个互不相交的组

,对于
,都有
,并且每个
都有一个Hamilton圈,由引理可知:每个
最多有M个点.

先将

的人排列为
,使得
;再将A_2中的点排列为:

,...

使

类似地,我们将剩下组中的点作这样的排列,使得每组中最后一个人都战胜了该组第一个人.排好后根据上述编号方式将N个人编号为1,2,3,……,N.

使得当

时,若a,b同组,由于每组最多有M个人,因此b为该组第一人,a为最后一人,因此有

若a,b不同组,则a所在的组号大于b,亦有

.

综上所述,结论成立.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值