c语言加速度积分得到速度_自编微积分教材-第一章 微积分漫谈(1)

前言:儿子的学习,包括数学和科学、英语,一直是由学外语出身的老婆在辅导,今年初一暑假,7月初,儿子考上了深国交,看到A Level数学的课程,明年的数学课本就有微积分的内容了。我觉得很多微积分的课本,尤其是回忆自己以前学的高等数学,感觉这些课本,写的并不好。对毕业于一所非著名一般性重点工科大学计算机系毕业的我来说,还是要发挥自己作为父亲和工科出身的价值,因此,想自己整理资料,写一份微积分教材。这份教材,同样可以适用于国内的高中生和大学生(主要是大学)。BTW,和传统课本相比,我们做过学生,知道学生的困惑,而且为了不那么严肃,本文写作风格,采用口水稿的形式,也是我们的特色。差不多一年的时间,希望可以写完。更主要的是,希望发出来,能看到更多网友的意见,听听大家的意见,更好地完善。里面的数学符号,可能会有些变形,我尽量做好。

第一章 微积分漫谈

每个人小时候,都是一个好奇宝宝,总有那么多的为什么要问,经常把父母问的张口结舌。当我们长大一点,这种好奇心,其实也并没有消失,只不过是在成长的过程中被压抑了,在课堂上,可能仍然会有这样的疑问,为什么这样?为什么会有这个东西?为什么…

遗憾的是,我们中国的老师,未必会喜欢这样的好奇学生:你老这样问为什么,我还有没有时间讲课了?你听着就是了,我怎么讲,你就怎么听。

而且,我们中国的教科书,是以结果和希望灌输的内容来进行讲解的,上来就是一堆抽象的概念,很难使学生理解,为什么会有这样的一个东西?每个知识点,都是为了解决什么问题而产生的,存在意义是什?能用来干什么?

比如上大学时,我们在学习高等数学或者微积分时,一直有这样的困惑:

  • 我们的高等数学教科书,不是讲微积分的吗,为什么一上来就讲数列的极限?这个时候,我连微积分到底是啥,都没有搞清楚啊,这个极限和微积分是啥关系啊?
  • 微分和积分到底是啥?他们的核心思想是什么,他们到底有啥用?
  • 微积分到底是怎么产生的,是为了解决什么问题?难道他们是数学家们闭门造车,凭空臆想出来的吗?

教科书如果变成定理和公式的堆积,或者公式的大辞典,那就很难让学生理解数学不断进化的过程,更主要的是,很难激起学生对数学的兴趣。

所以,很多中国的孩子,很多会抱怨说,高等数学/微积分很无趣啊,我们的课本,看起来很无聊啊,都是一堆堆让人眼晕的数学定理的堆砌,对了,还外带习题集,既不知来龙(为什么会有这个东西,是解决什么问题产生的,怎么来的),也不知去脉(有什么用,能用来干什么,你总不能告诉我是做题吧?),又写的干干巴巴,看起来味同嚼蜡,听起来又不容易懂,你怎么让我们提起什么兴趣来呢?学不好,真不怪我们啊。

事实上,数学家们发明了一个又一个的理论,不是为了成为教科书上干干巴巴的一条条定理,而是为了解决实际存在的问题的。理解数学家们当时面临的问题,他们的解决办法,自然也就知道了这个理论的存在意义和价值,更容易理解对应的数学理论。

比如几何是数学最早的领域,起源于古埃及,是为了解决测量等实际问题而产生的。具体的,对于中国学生耳熟能详的勾股定理,我们上初中时就知道了勾三股四玄五,然后我们就记住了a^2+b^2=c2,但是埃及人很早就拿来干活了。比如修建建筑过程中,需要各个方向垂线,向下的垂线好说,拿个线,吊个铅锤啊砖头石块的问题就可以了,可是,其他方向的垂线怎么办?吊铅锤没用啊,做一把极其大的三角尺?

埃及人的做法是,找一根长绳子,然后在整个绳子上做十二分等长的标记,标记出各个点为0,1,2,3,4...11,首尾连接成环。先把0点固定好,然后另一个人牵动4号结,把绳子拉直使之成为一条直线,第三个人找到标记为9号的点,将绳子拉直,那么从0号到4号的绳子,垂直于0号到9号的绳子。[清华大学,数据结构,邓俊辉, P23-P24]

劳动人民的创造力,真的是很厉害的。再如,我国古代农民丈量土地面积,土地如果是不规则的怎么办?你以为他们都是数学家吗,按照什么周髀算经去计算吗?或者请个数学家来帮助他们丈量土地?负责丈量土地的人,是不懂复杂的数学公式的,他们只会基本的矩形面积公式,在实际工作中,他们会使用叉尺,对于不规则的土地,先尽可能找出一块规则的,好计算的部分,快速量好,然后把剩下的土地分割成一个个小方块,然后累加起来,边角地带,可以分割求补,最后得出基本准确的土地面积。仔细想想这个过程,这个分割土地成为一个个小方块然后累加起来的思路,除了方块的个头大一点,其实,还是蛮符合积分思想的。

所以微积分的产生,也不例外。人类在长期的生产活动和科学研究中,遇到了两大类问题都很棘手:求曲线的切线和求曲线围成图形的面积,正是由于对这两类问题的研究,才导致了微积分的诞生。

(一)微积分是什么?

微积分是微分和积分的统称。有人总结:微分就是无限细分,积分就是无限求和

比如牛顿在研究苹果落地过程,从第二秒到第四秒,苹果掉落的距离△S除以两秒的时间间隔△t,就是这两秒内苹果的平均速度,但是如果缩短△t,从两秒变化到无穷小的时间间隔,那么这个平均速度就变成了瞬时速度,这个瞬时速度,就是微分的概念,而苹果在每个瞬间所掉落的路程之和,就是积分的概念。

随着生产力的发展,物理、天文以及几何,提出了一些重要问题需要解决,微积分的诞生主要来自四个方面的问题:

  • 求曲线的长度,曲线围成的面积,曲线包围的物体的体积,物体的重心,统称为求积问题。例如求行星的运动轨迹。
  • 求曲线的切线 (微分学问题)。为什么需要研究曲线的切线?是因为17世纪的数学家,遇到了三类问题,实质上都是求曲线的切线:
  1. 光的反射问题。透镜的设计者要研究光线透过透镜的通道,必须知道知道光线的入射角度,获得透镜曲面上任意一点的切线和法线。比如光在平面上,入射角等与反射角,在圆弧上,入射光和反射光,与圆弧的切线所成角相等,那么对于其他曲线呢,光线的反射,必须要求出曲线的切线;光学中的反射和折射,其实就是求切线和法线问题。
  2. 曲线运动的速度问题。对于直线运动,速度与位移方向相同或者相反。要确定,曲线运动的速度和方向,必须求出切线;
  3. 曲线的交角问题。如何求两条曲线相交所构成的角,需要确定曲线在交点处的切线。
  • 物理学的求运动物体的即时速度和路程。已知变速运动的路程为时间的函数,求瞬时速度与加速度,或者相反,困难在于速度和加速度每时每刻都在发生变化。(前面一半为微分学问题,求路程为积分学问题)
  • 求一些问题的极大值和极小值 (微分学问题),例如行星的近日点和远日点的计算,弹道学中涉及炮弹的最大射程问题。

纵观微积分的发展过程,数学家总是围绕着几个关键词:无穷、无穷分割、极限,在开展研究,而他们的反对者们,包括其他数学家,诡辩专家,传教士(是不是很奇怪,关他们什么事情?事实上,真的相关啊)也围绕着这些关键词ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值