单调有界定理适用于函数吗_【数学分析】离散的L'Hospital法则——Stolz定理...

今天在专栏审核的时候看到了这篇文章

云非非:数列单调递增--从入门到入土​zhuanlan.zhihu.com

终于,锐腾君还是把它的魔爪伸向了分析学。这大概是锐腾君第一篇分析学的文章?

那么还是欢迎大家关注

锐腾君的数学杂谈​zhuanlan.zhihu.com
f21b486238678470ee0d3a49abd92326.png

还有锐腾君的闲话群:761522078

上文中的题目我想起来了一个我刚开始学数学分析的时候做到的一道习题:

例:设

(1).求

(2).求

那么我们通过这道题来介绍一下Stolz定理。


单调有界收敛定理

首先,我默认大家知道极限的定义。关于极限的定义,可以参考 @Dylaaan 的文章

Dylaaan:【极限】一篇文章,给高中生简单介绍极限​zhuanlan.zhihu.com
4868173a2609fa853af04fae345ae4f6.png

在讲这题之前,我们先证明一个定理:

定理1:(单调有界收敛定理) 如果一个数列
单调递增有上界(或单调递减有下界),则
收敛。

我们只需证单调递增有上界的情形,

我们取集合

,根据上确界存在定理

(上确界存在定理可以参考本人回答:

分数指数幂以及无理数运算法则属于数学的哪个分支?​www.zhihu.com

我们知道

存在。

因此,根据上确界的定义,取一个任意大小的正数

,总存在

因此,我们知道

从而

,也即
收敛。

单调递减有下界的情形可以用完全相同的手法证明。

第(1)题的解决

例:设

(1).求

由于

,故
有单调递减有下界,从而收敛。

因此,我们设它的极限为

,从而

上述方程在

内只有解

从而

caf8d946d8e009664a73f6dd5d0ec25a.png
数列{x_n}的图像

Stolz定理既然被称为离散的L'Hospital定理,我们当然应该顺带提一下L'Hospital定理。

L'Hospital法则

定理2:(L'Hospital法则)当
时,
型不定式或者
型不定时,
的某个邻域可导,且
存在时,则有

这个定理的证明需要利用到微分中值定理,所以我们暂时不证明。毕竟大多数高中生知道这个定理的时候都是不知道怎么证的。

稍后我们再给出L'Hospital定理的另一个形式

上下极限

定义1:对于一个数列
,我们定义
为上确界数列,那么
一定存在,我们称这个极限为
的上极限,记为
;同样地,将上确界换成下确界,我们同样可以定义下极限

函数的上下极限可以用类似的方式定理,这里留给读者思考。

引入上下极限的好处就是,对于一个数列(函数),它的极限可能不存在,但是它的上下极限是一定存在的,这一点要利用聚点原则来证明。因此我们先不作证明,大家暂且承认这个事实。

上下极限它的存在性其实也给我们带来一个判断数列(函数)是否收敛的方法,如果一个数列收敛,它的极限一定等于上极限和下极限,反过来是否成立呢?我们有如下定理

定理3:数列
收敛的充要条件是

必要性显然,只需证充分性:

采用反证法,根据Bolzano-Weierstrass定理(致密性定理),它至少存在两个子列收敛于不同的元素

因此

因此

,矛盾。

L'Hospital定理的上下极限表示

定义了上下极限以后,我们可以进一步地推广L'Hospital定理

定理4:(广义L'Hospital定理) 对于同样满足条件的函数
,我们有

从定理4,我们很容易推出定理2。

这是因为

存在时

从而只能


Stolz定理

对于连续可导函数,我们有L'Hospital法则,但是对于数列的话,我们连导数这种工具都没有。

但是对于数列而言,它有一个和微分及其相似的工具,叫做差分。

定义2:对于一个数列
,我们称
为其在
出的
差分
称为其
差分数列(简称差分)。

我们把这个定义和导数,导函数的定义对比一下,是不是十分相似?

那么我们用差分来代替微分,再加一点细节,就得到Stolz定理了。

我们以介绍

型Stolz定理为例,
型留给读者思考。
定理5:(Stolz定理)若
是两个无穷小量(即收敛于
),且
严格单调递增,如果
存在,则
。如果我们采用上下极限的描述就是

注意,在不采用上下极限的描述的等式中,上述等号反向不一定成立。举个反例

(这是一个
型的不定式),
,但是
却是发散的。如果我们从上下极限的角度来看:

的四项对应出来分别是
,这也就直接可以看出了
存在,但是
而不存在。所以这个等号反过来未必成立。

注意:如果你能证明

收敛时,Stolz定理的等号是可以反向使用的。

接下来我们给出Stolz定理不采用上下极限的描述的证明:

不妨设

请读者思考为什么可以不妨设

利用绝对值不等式,我们知道

,也就说明

第(2)题的解决

例:设

(2).求

首先我们知道

单调递减收敛于
,从而
单调递增收敛于

因此

然后在

处利用Taylor公式,我们知道
(不知道Taylor公式的刚刚那个地方用若干次L'Hospital法则也能算出答案)

因此

从而


怎么样,是不是觉得很神奇呢?而且刚刚这个极限进一步说明了数列

的增长是一个级别的。这和我们在上面给出的图象,挺接近的...

学会了Stolz定理的你是不是想大显身手呢?来,这里有几道习题,拿去做。

课后习题

1.设

,求证:

2.设

,求

3.设

,求

*4.估计数列:

的增长级别,并证明之。

*5.设

,证明:

稍微隔一点距离给4,5的提示

(4.提示:这个数列的增长级别是

(5.提示:可以考虑证明

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值