今天在专栏审核的时候看到了这篇文章
云非非:数列单调递增--从入门到入土zhuanlan.zhihu.com终于,锐腾君还是把它的魔爪伸向了分析学。这大概是锐腾君第一篇分析学的文章?
那么还是欢迎大家关注
锐腾君的数学杂谈zhuanlan.zhihu.com还有锐腾君的闲话群:761522078
上文中的题目我想起来了一个我刚开始学数学分析的时候做到的一道习题:
例:设
(1).求
(2).求
那么我们通过这道题来介绍一下Stolz定理。
单调有界收敛定理
首先,我默认大家知道极限的定义。关于极限的定义,可以参考 @Dylaaan 的文章
Dylaaan:【极限】一篇文章,给高中生简单介绍极限zhuanlan.zhihu.com在讲这题之前,我们先证明一个定理:
定理1:(单调有界收敛定理) 如果一个数列单调递增有上界(或单调递减有下界),则收敛。
我们只需证单调递增有上界的情形,
我们取集合
(上确界存在定理可以参考本人回答:
分数指数幂以及无理数运算法则属于数学的哪个分支?www.zhihu.com我们知道
因此,根据上确界的定义,取一个任意大小的正数
因此,我们知道
从而
单调递减有下界的情形可以用完全相同的手法证明。
第(1)题的解决
例:设
(1).求
由于
因此,我们设它的极限为
上述方程在
从而
Stolz定理既然被称为离散的L'Hospital定理,我们当然应该顺带提一下L'Hospital定理。
L'Hospital法则
定理2:(L'Hospital法则)当时,为型不定式或者型不定时,在的某个邻域可导,且存在时,则有。
这个定理的证明需要利用到微分中值定理,所以我们暂时不证明。毕竟大多数高中生知道这个定理的时候都是不知道怎么证的。
稍后我们再给出L'Hospital定理的另一个形式
上下极限
定义1:对于一个数列,我们定义为上确界数列,那么一定存在,我们称这个极限为的上极限,记为;同样地,将上确界换成下确界,我们同样可以定义下极限
函数的上下极限可以用类似的方式定理,这里留给读者思考。
引入上下极限的好处就是,对于一个数列(函数),它的极限可能不存在,但是它的上下极限是一定存在的,这一点要利用聚点原则来证明。因此我们先不作证明,大家暂且承认这个事实。
上下极限它的存在性其实也给我们带来一个判断数列(函数)是否收敛的方法,如果一个数列收敛,它的极限一定等于上极限和下极限,反过来是否成立呢?我们有如下定理
定理3:数列收敛的充要条件是
必要性显然,只需证充分性:
采用反证法,根据Bolzano-Weierstrass定理(致密性定理),它至少存在两个子列收敛于不同的元素
因此
因此
L'Hospital定理的上下极限表示
定义了上下极限以后,我们可以进一步地推广L'Hospital定理
定理4:(广义L'Hospital定理) 对于同样满足条件的函数,我们有
从定理4,我们很容易推出定理2。
这是因为
从而只能
Stolz定理
对于连续可导函数,我们有L'Hospital法则,但是对于数列的话,我们连导数这种工具都没有。
但是对于数列而言,它有一个和微分及其相似的工具,叫做差分。
定义2:对于一个数列,我们称为其在出的差分,称为其差分数列(简称差分)。
我们把这个定义和导数,导函数的定义对比一下,是不是十分相似?
那么我们用差分来代替微分,再加一点细节,就得到Stolz定理了。
我们以介绍
定理5:(Stolz定理)若是两个无穷小量(即收敛于),且严格单调递增,如果存在,则。如果我们采用上下极限的描述就是
注意,在不采用上下极限的描述的等式中,上述等号反向不一定成立。举个反例
注意:如果你能证明
接下来我们给出Stolz定理不采用上下极限的描述的证明:
不妨设
则
利用绝对值不等式,我们知道
而
第(2)题的解决
例:设
(2).求
首先我们知道
因此
然后在
因此
从而
怎么样,是不是觉得很神奇呢?而且刚刚这个极限进一步说明了数列
学会了Stolz定理的你是不是想大显身手呢?来,这里有几道习题,拿去做。
课后习题
1.设
2.设
3.设
*4.估计数列:
*5.设
稍微隔一点距离给4,5的提示
(4.提示:这个数列的增长级别是
(5.提示:可以考虑证明