python自动化测试框架pytest.pdf_Python 自动化测试框架unittest与pytest的区别

引言

前面一篇文章Python单元测试框架介绍已经介绍了python单元测试框架,大家平时经常使用的是unittest,因为它比较基础,并且可以进行二次开发,如果你的开发水平很高,集成开发自动化测试平台也是可以的。而这篇文章主要讲unittest与pytest的区别,pytest相对unittest而言,代码简洁,使用便捷灵活,并且插件很丰富。

Unittest vs Pytest

主要从用例编写规则、用例的前置和后置、参数化、断言、用例执行、失败重运行和报告这几个方面比较unittest和pytest的区别:

用例编写规则

782587-20200508000542709-1461949826.png

用例前置与后置条件

782587-20200508000700448-404447402.png

断言

782587-20200508000724175-464160297.png

测试报告

782587-20200508000737927-449494842.png

失败重跑机制

782587-20200508000755441-31972861.png

参数化

782587-20200508000808571-2012070627.png

用例分类执行

782587-20200508000828411-656501859.png

如果不好看,可以看下面表格:

782587-20200508001320080-2136727503.png

总体来说,unittest用例格式复杂,兼容性无,插件少,二次开发方便。pytest更加方便快捷,用例格式简单,可以执行unittest风格的测试用例,无须修改unittest用例的任何代码,有较好的兼容性。pytest插件丰富,比如flask插件,可用于用例出错重跑,还有xdist插件,可用于设备并行执行,效率更高。

实例演示

讲了七大区别,总要演示一下具体实例,用事实说话。

前后置区别

这里抽用例前置与后置的区别来讲,先看unittest的前后置使用:

import unittest

class TestFixtures01(unittest.TestCase):

# 所有用例执行前执行

def setUp(self) -> None:

print("setUp开始")

def tearDown(self) -> None:

print("tearDown结束")

# 每条用例执行前执行

@classmethod

def setUpClass(cls) -> None:

print("setUpClass开始")

@classmethod

def tearDownClass(cls) -> None:

print("tearDownClass结束")

# 测试用例

def test_001(self):

print("测试用例001")

class TestFixtures02(unittest.TestCase):

def test_002(self):

print("测试类2")

# 每个模块执行前执行

def setUpModule():

"""

在所有测试类在调用之前会被执行一次,函数名是固定写法,会被unittest框架自动识别

"""

print('集成测试 >>>>>>>>>>>>>>开始')

def tearDownModule():

print("集成测试 >>>>>>>>>>>>>>结束")

if __name__ == '__main__':

unittest.main()

运行结果:

782587-20200508002522595-2000406155.png

从结果上得知, 三个方法的逻辑优先级: setUp()&tearDown() < setUpClass()&tearDownClass() < setUpModule()&tearDownModule()

接下来看pytest的前后置:

1、我们都知道在自动化测试中都会用到前后置,pytest 相比 unittest 无论是前后置还是插件等都灵活了许多,还能自己用 fixture 来定义。

首先了解一下,用例运行前后置级别如下:

1.模块级:全局的,整个模块开只运行一次,优先于测试用例。

2.类级别:定义在类里面,只针对此类生效。类似unittest的cls装饰器

3.函数级:只对函数生效,类下面的函数不生效。

4.方法级:定义在类里面,每个用例都执行一次

def setup_module():

print('\n整个模块 前 只运行一次')

def teardown_module():

print('\n整个模块 后 只运行一次')

def setup_function():

print('\n不在类中的函数,每个用例 前 只运行一次')

def teardown_function():

print('\n不在类中的函数,每个用例 后 只运行一次')

def test_ab():

b = 2

assert b < 3

def test_aba():

b = 2

assert b < 3

class Test_api():

def setup_class(self):

print('\n此类用例 前 只执行一次')

def teardown_class(self):

print('\n此类用例 后 只执行一次')

def setup_method(self):

print('\n此类每个用例 前 只执行一次')

def teardown_method(self):

print('\n此类每个用例 后 执行一次')

def test_aa(self):

a = 1

print('\n我是用例:a') # pytest -s 显示打印内容

assert a > 0

def test_b(self):

b = 2

assert b < 3

运行结果:

782587-20200508004233983-1366111016.png

2、这是原始用法,下面看使用Fixture,Fixture 其实就是自定义 pytest 执行用例前置和后置操作,首先创建 conftest.py 文件 (规定此命名),导入 pytest 模块,运用 pytest.fixture 装饰器,默认级别为:函数级:

782587-20200508004406177-76746559.png

其它用例文件调用即可,如下定义一个函数,继承 conftest.py 文件里的 login 函数即可调用:

# conftest.py配置需要注意以下点:

# conftest.py配置脚本名称是固定的,不能改名称

# conftest.py与运行的用例要在同一个pakage下,并且有__init__.py文件

# 不需要import导入 conftest.py,pytest用例会自动查找

import pytest

def test_one(login):

print("登陆后,操作111")

# def test_two():

# print("操作222")

#

# def test_three(login):

# print("登陆后,操作333")

运行结果:

782587-20200508004541509-494767929.png

3、扩展用法,多个自定义函数和全局级别展示:(全局的比如用于登录获取到token其他用例模块就不需要再登录了)

import pytest

def test_one(login):

print("登陆后,操作111")

def test_two(login,open_page):

print("测试用例2")

def test_three(open_page):

print("测试用例3")

运行结果:

782587-20200508005624879-1039383173.png

细心的人应该可以知道,测试用例2并没有调用login函数,因为前置设置的是共享模式,类似全局函数。

参数化区别

参数化应用场景,一个场景的用例会用到多条数据来进行验证,比如登录功能会用到正确的用户名、密码登录,错误的用户名、正确的密码,正确的用户名、错误的密码等等来进行测试,这时就可以用到框架中的参数化,来便捷的完成测试。

参数化 就是数据驱动思想,即可以在一个测试用例中进行多组的数据测试,而且每一组数据都是分开的、独立的。

unittest参数化其实是:ddt,叫数据驱动。

pytest数据驱动,就是参数化,使用@pytest.mark.parametrize

1.先看unittest如何进行参数化:

test_data = [1,2,3]

@ddt.ddt

class Testddt(unittest.TestCase):

@ddt.data(*test_data)

def test_001(self,get_data):

print(get_data)

if __name__ == '__main__':

unittest.main()

运行结果:

782587-20200508011402397-82547333.png

2.pytest中参数化的用法

在测试用例的前面加上:

@pytest.mark.parametrize("参数名",列表数据)

参数名:用来接收每一项数据,并作为测试用例的参数。

列表数据:一组测试数据。

@pytest.mark.parametrize("参数1,参数2",[(数据1,数据2),(数据1,数据2)])

示例:

@pytest.mark.parametrize("a,b,c",[(1,3,4),(10,35,45),(22.22,22.22,44.44)])

def test_add(a,b,c):

res = a + b

assert res == c

实例:

@pytest.mark.parametrize('data',[1,2,3])

class Testddt(object):

def test_001(self,data):

print(data)

if __name__ == '__main__':

pytest.main(['-sv'])

运行结果:

782587-20200508012054059-2022514553.png

总结

以上就是unittest与pytest测试框架的区别,七大主要区别,这里已讲了两个区别的实例,其他五个有时间再补充,如对python自动化测试感兴趣的朋友,可以加入左下方学习交流群,讨论交流一下心得。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值