python识别复杂验证码_Python3 识别验证码(opencv-python)

Python3 识别验证码(opencv-python)

一、准备工作

使用opencv做图像处理,所以需要安装下面两个库:

pip3 install opencv-python

pip3 install numpy

二、识别原理

采取一种有监督式学习的方法来识别验证码,包含以下几个步骤:

图片处理 - 对图片进行降噪、二值化处理

切割图片 - 将图片切割成单个字符并保存

人工标注 - 对切割的字符图片进行人工标注,作为训练集

训练数据 - 用KNN算法训练数据

检测结果 - 用上一步的训练结果识别新的验证码

1,图片处理

先来看一下要识别的验证码是长什么样的:

字符做了一些扭曲变换。仔细观察,还可以发现图片中间的部分添加了一些颗粒化的噪声。

先读入图片,并将图片转成灰度图,代码如下:

mport cv2

im=cv2.imread(filepath)

im_gray= cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)

经过上面的处理,我们的彩色图片变成了下面这样:

将图片做二值化处理,代码如下:

ret, im_inv = cv2.threshold(im_gray,127,255,cv2.THRESH_BINARY_INV)

127是设定的阈值,像素值大于127被置成了0,小于127的被置成了255。处理后的图片变成了这样:

接下来,我们应用高斯模糊对图片进行降噪。高斯模糊的本质是用高斯核和图像做卷积,代码如下:

kernel = 1/16*np.array([[1,2,1], [2,4,2], [1,2,1]])

im_blur= cv2.filter2D(im_inv,-1,kernel)

降噪后的图片如下:

可以看到一些颗粒化的噪声被平滑掉了。

降噪后,对图片再做一轮二值化处理:

ret, im_res = cv2.threshold(im_blur,127,255,cv2.THRESH_BINARY)

现在图片变成了这样:

好了,接下来,要开始切割图片了。

2,切割图片

这一步是所有步骤里最复杂的一步。我们的目标是把最开始的图片切割成单个字符,并把每个字符保存成如下的灰度图

首先我们用opencv的findContours来提取轮廓:

im2, contours, hierarchy = cv2.findContours(im_res, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

把提取的轮廓用矩形框起来,画出来是这样:

可以看到,每个字符都被检测出来了。

但这只是理想情况,很多时候,相邻字符有粘连的会被识别成同一个字符,比如像下面的情况:

要处理这种情况,我们就要对上面的图片做进一步的分割。字符粘连会有下面几种情况,我们逐一来看下该怎么处理。

3个字符被识别成2个字符;

这种情况,对粘连的字符轮廓,从中间进行分割,代码如下:

result =[]for contour incontours:

x, y, w, h=cv2.boundingRect(contour)if w == w_max: #w_max是所有contonur的宽度中最宽的值

box_left = np.int0([[x,y], [x+w/2,y], [x+w/2,y+h], [x,y+h]])

box_right= np.int0([[x+w/2,y], [x+w,y], [x+w,y+h][x+w/2,y+h]])

result.append(box_left)

result.append(box_right)else:

box= np.int0([[x,y], [x+w,y], [x+w,y+h], [x,y+h]])

result.append(box)

对第一种情况,对于左右两个轮廓,从中间分割即可。对第二种情况,将包含了3个字符的轮廓在水平方向上三等分。具体代码如下:

result =[]for contour incontours:

x, y, w, h=cv2.boundingRect(contour)if w == w_max and w_max >= w_min * 2:#如果两个轮廓一个是另一个的宽度的2倍以上,我们认为这个轮廓就是包含3个字符的轮廓

box_left = np.int0([[x,y], [x+w/3,y], [x+w/3,y+h], [x,y+h]])

box_mid= np.int0([[x+w/3,y], [x+w*2/3,y], [x+w*2/3,y+h], [x+w/3,y+h]])

box_right= np.int0([[x+w*2/3,y], [x+w,y], [x+w,y+h], [x+w*2/3,y+h]])

result.append(box_left)

result.append(box_mid)

result.append(box_right)elif w_max < w_min * 2:#如果两个轮廓,较宽的宽度小于较窄的2倍,我们认为这是两个包含2个字符的轮廓

box_left = np.int0([[x,y], [x+w/2,y], [x+w/2,y+h], [x,y+h]])

box_right= np.int0([[x+w/2,y], [x+w,y], [x+w,y+h], [x+w/2,y+h]])

result.append(box_left)

result.append(box_right)else:

box= np.int0([[x,y], [x+w,y], [x+w,y+h], [x,y+h]])

result.append(box)

还有一种情况4个字符被识别成1个字符:

这种情况对轮廓在水平方向上做4等分即可,代码如下:

result =[]

contour=contours[0]

x, y, w, h=cv2.boundingRect(contour)

box0= np.int0([[x,y], [x+w/4,y], [x+w/4,y+h], [x,y+h]])

box1= np.int0([[x+w/4,y], [x+w*2/4,y], [x+w*2/4,y+h], [x+w/4,y+h]])

box2= np.int0([[x+w*2/4,y], [x+w*3/4,y], [x+w*3/4,y+h], [x+w*2/4,y+h]])

box3= np.int0([[x+w*3/4,y], [x+w,y], [x+w,y+h], [x+w*3/4,y+h]])

result.extend([box0, box1, box2, box3])

对图片分割完成后,我们将分割后的单个字符的图片存成不同的图片文件,以便下一步做人工标注。存取字符图片的代码如下:

for box inresult:

cv2.drawContours(im, [box], 0, (0,0,255),2)

roi= im_res[box[0][1]:box[3][1], box[0][0]:box[1][0]]

roistd= cv2.resize(roi, (30, 30)) #将字符图片统一调整为30x30的图片大小

timestamp = int(time.time() * 1e6) #为防止文件重名,使用时间戳命名文件名

filename = "{}.jpg".format(timestamp)

filepath= os.path.join("char", filename)

cv2.imwrite(filepath, roistd)

字符图片保存在名为char的目录下面,这个目录里的文件大致是长这样的(文件名用时间戳命名,确保不会重名):

接下来,我们开始标注数据。

3、人工标注

这一步是所有步骤里最耗费体力的一步了。为节省时间,我们在程序里依次打开char目录中的每张图片,键盘输入字符名,程序读取键盘输入并将字符名保存在文件名里。代码如下:

files = os.listdir("char")for filename infiles:

filename_ts= filename.split(".")[0]

patt= "label/{}_*".format(filename_ts)

saved_num=len(glob.glob(patt))if saved_num == 1:print("{} done".format(patt))continuefilepath= os.path.join("char", filename)

im=cv2.imread(filepath)

cv2.imshow("image", im)

key=cv2.waitKey(0)if key == 27:

sys.exit()if key == 13:continuechar=chr(key)

filename_ts= filename.split(".")[0]

outfile= "{}_{}.jpg".format(filename_ts, char)

outpath= os.path.join("label", outfile)

cv2.imwrite(outpath, im)

这里一共标注了大概800张字符图片,标注的结果存在名为label的目录下,目录下的文件是这样的(文件名由原文件名+标注名组成)

接下来,我们开始训练数据。

4,训练数据

首先,我们从label目录中加载已标注的数据:

filenames = os.listdir("label")

samples= np.empty((0, 900))

labels=[]for filename infilenames:

filepath= os.path.join("label", filename)

label= filename.split(".")[0].split("_")[-1]

labels.append(label)

im=cv2.imread(filepath, cv2.IMREAD_GRAYSCALE)

sample= im.reshape((1, 900)).astype(np.float32)

samples=np.append(samples, sample, 0)

samples=samples.astype(np.float32)

unique_labels=list(set(labels))

unique_ids=list(range(len(unique_labels)))

label_id_map=dict(zip(unique_labels, unique_ids))

id_label_map=dict(zip(unique_ids, unique_labels))

label_ids= list(map(lambdax: label_id_map[x], labels))

label_ids= np.array(label_ids).reshape((-1, 1)).astype(np.float32)

接下来,训练我们的模型:

model =cv2.ml.KNearest_create()

model.train(samples, cv2.ml.ROW_SAMPLE, label_ids)

训练完,我们用这个模型来识别一下新的验证码。

5,检测结果

下面是我们要识别的验证码:

对于每一个要识别的验证码,我们都需要对图片做降噪、二值化、分割的处理(代码和上面的一样,这里不再重复)。假设处理后的图片存在变量im_res中,分割后的字符的轮廓信息存在变量boxes中,识别验证码的代码如下:

for box inboxes:

roi= im_res[box[0][1]:box[3][1], box[0][0]:box[1][0]]

roistd= cv2.resize(roi, (30, 30))

sample= roistd.reshape((1, 900)).astype(np.float32)

ret, results, neighbours, distances= model.findNearest(sample, k = 3)

label_id=int(results[0,0])

label=id_label_map[label_id]print(label)

运行上面的代码,可以看到程序输出:

Z

Y

C

Q

图片中的验证码被成功地识别出来。

测试了下识别的准确率,取100张验证码图片(存在test目录下)进行识别,识别的准确率约为80%。

看到有人说用神经网络识别验证码,准确率可以达到90%以上;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值