模拟退火算法_一个模拟退火算法 Python库

这是一个使用模拟退火算法的Python库,适用于多元函数优化和解决旅行商问题(TSP)。库中还包含了遗传算法、粒子群算法等其他优化算法。提供了详细的文档和示例代码,包括动画展示,可以直接运行。
摘要由CSDN通过智能技术生成

github地址

guofei9987/scikit-opt​github.com
5d2f3a79132a3b1747f3474f90296b30.png

安装

$pip install scikit-opt


1 模拟退火算法用于多元函数优化

from sko.SA import SA
def demo_func(x):
    x1, x2, x3 = x
    return x1 ** 2 + (x2 - 0.05) ** 2 + x3 ** 2

sa = SA(func=demo_func, x0=[1, 1, 1])
x_star, y_star = sa.run()
print(x_star, y_star)
import matplotlib.pyplot as plt
import pandas as pd

plt.plot(pd.DataFrame(sa.f_list).cummin(axis=0))
plt.show()

87befc975b2b425221552e74cbcb7998.png

2 模拟退火算法解决TSP问题

TSP问题(旅行商问题)

作为demo,生成模拟数据(代码与遗传算法解决TSP问题一样,这里省略)

调用模拟退火算法

from sko.SA import SA_TSP
sa_tsp = SA_TSP(func=demo_func, x0=range(num_points))
best_points, best_distance = sa_tsp.run()

画出结果

fig, ax = plt.subplots(1, 1)
best_points_ = np.concatenate([best_points, [best_points[0]]])
best_points_coordinate = points_coordinate[best_points_, :]
ax.plot(best_points_coordinate[:, 0], best_points_coordinate[:, 1], 'o-r')
plt.show()

5bf5c48b578ad75189b578eed10c0922.png

库的地址,欢迎star

scikit-opt​github.com

另外,这个库总共封装了遗传算法(GA)、粒子群算法(PSO)、蚁群算法(ACA)、模拟退火算法(SA)、免疫优化算法(IA)、人工鱼群算法(AFSA)。
文档在下面,大家探索吧。

中文文档​scikit-opt.github.io 英文文档​scikit-opt.github.io

更新两个图,其中一个是动画。代码都在那个库里,直接可以运行。

95e8fd4551624ede39dcbbd1743b7788.png

31738734d98e7aeb348c3a6d8bda5896.gif
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值