github地址
guofei9987/scikit-optgithub.com安装
$pip install scikit-opt
1 模拟退火算法用于多元函数优化
from sko.SA import SA
def demo_func(x):
x1, x2, x3 = x
return x1 ** 2 + (x2 - 0.05) ** 2 + x3 ** 2
sa = SA(func=demo_func, x0=[1, 1, 1])
x_star, y_star = sa.run()
print(x_star, y_star)
import matplotlib.pyplot as plt
import pandas as pd
plt.plot(pd.DataFrame(sa.f_list).cummin(axis=0))
plt.show()
2 模拟退火算法解决TSP问题
TSP问题(旅行商问题)
作为demo,生成模拟数据(代码与遗传算法解决TSP问题一样,这里省略)
调用模拟退火算法
from sko.SA import SA_TSP
sa_tsp = SA_TSP(func=demo_func, x0=range(num_points))
best_points, best_distance = sa_tsp.run()
画出结果
fig, ax = plt.subplots(1, 1)
best_points_ = np.concatenate([best_points, [best_points[0]]])
best_points_coordinate = points_coordinate[best_points_, :]
ax.plot(best_points_coordinate[:, 0], best_points_coordinate[:, 1], 'o-r')
plt.show()
库的地址,欢迎star
scikit-optgithub.com另外,这个库总共封装了遗传算法(GA)、粒子群算法(PSO)、蚁群算法(ACA)、模拟退火算法(SA)、免疫优化算法(IA)、人工鱼群算法(AFSA)。
文档在下面,大家探索吧。
更新两个图,其中一个是动画。代码都在那个库里,直接可以运行。