python数值分析算例_梯度下降求解线性方程组算例设计

本文探讨了如何使用最速梯度下降法解决凸二次优化问题,该问题等价于求解线性方程组。通过理论分析,证明了梯度为零的点是极小值点。文章提供了Python和MATLAB的代码实现,展示了一种数值近似解的方法。实验比较了不同条件数和问题规模下,算法的收敛速度和精度,并通过引入权重优化了迭代速度。
摘要由CSDN通过智能技术生成

凸二次优化问题

Theory. 设

是实对称正定矩阵,

,则求解凸二次优化问题

等价于求解线性方程组

Proof. 二次型二阶可导,极小值点处梯度为零,现对优化的目标函数求梯度。二次型本质上具有:

计算梯度的分量表达式:

合在一起写成矩阵形式:

显然,凸二次优化问题的极值条件等价于该线性方程组。凸二次优化问题在建模中十分常见,这说明讨论线性方程组的求解方法具有普遍的实用价值。然而对于规模较大的问题,使用线性代数中的克莱姆法则暴力展开将导致时间开销巨大,而高斯消元法算法流程又较为复杂。本文将介绍一种常见的数值分析方法,求得线性方程组的数值近似解。

最速梯度下降法

称优化目标函数的梯度为残量(Residue),即是当前解对于线性方程组的不满足量:

由于函数是凸函数,极值点一定存在。当前解处函数的梯度值表示了函数值上升最快的方向(梯度方向上方向导数最大)。那么沿着相反的方向每迭代一步就会更加靠近最优的极小值解。于是,我们定义迭代关系:

其中

表示迭代第

轮的解,

表示每轮迭代的步长,即每一步下降多少的权重。之所以需要设计一个与

相关的步长,是因为随着迭代的进行,梯度是变化的。越靠近驻点的梯度将会越小,直到接近于0时收敛。同时还要考虑在接近于驻点时应该放缓步伐,否则会出现梯度在正负之间频繁震荡,解在最优解左右摇摆的情况。

在最速下降法中,将

作为自变量代入原函数,并看作

的函数,对其进行最小化:

同样的,驻点处梯度为零。根据链式求导法则:

最后一步由于

是正定矩阵,所以分母也是一个正定二次型,值不为零,可以直接除过来。由此,我们最终得到了解的迭代关系:

算例设计与实验

参考南科大的数值分析作业题EH计算设计SUSTech的算例一(由于版权关系无传送门)

生成实对称正定矩阵 采用文献[1]中的类似方法生成矩阵

其中

分别为Householder矩阵和对角矩阵:

Householder矩阵是对称正交矩阵,这时,对角矩阵的特征值就是

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值