1、运用
索引来更快地遍历表。
缺省情况下建立的索引是非群集索引,但有时它并不是最好
的。在非群集索引下,数据在物理上随机存放在数据页上。合理的索引设计要建立在对各种查询的剖析
和预测上。通常
来说:
a.有大量重复值、且时常
有范围查询( > ,< ,> =,< =)和order by、group by发生的列,可思虑
建立群集索引;
b.时常
同时存取多列,且每列都含有重复值可思虑
建立组合索引;
c.组合索引要尽量使重要
查询形成索引覆盖,其前导列必须
是运用
最频繁的列。索引虽有助于提高性能但不是索引越多越好,恰好相反过多的索引会导致系统低效。用户在表中每加进一个索引,维护索引集合就要做相应的更新工作。
2、在海量查询时尽量少用格式转换。
3、ORDER BY和GROPU BY:运用
ORDER BY和GROUP BY短语,任何一种索引都有助于SELECT的性能提高。
4、任何对列的操作都将导致表扫描,它包含
数据库函数、计算表达式等等,查询时要尽可能将操作移至等号右边。
5、IN、OR子句常会运用
工作表,使索引失效。假如
不产生大量重复值,能够
思虑
把子句拆开。拆开的子句中应该包含索引。
6、只要能满足你的需求,应尽可能运用
更小的数据类型:比方
运用
MEDIUMINT代替INT
7、尽量把所有的列配置
为NOT NULL,假如
你要保存NULL,手动去配置
它,而不是把它设为默认值。
8、尽量少用VARCHAR、TEXT、BLOB类型
9、假如
你的数据只有你所知的少量的多个
。最好运用
ENUM类型
10、正如graymice所讲的那样,建立索引。
以下是我做的一个实验,能够
发觉
索引能极大地提高查询的效率:
我有一个会员信息表users,里边有37365条用户记载
:
在不加索引的时刻
执行
查询:
sql语句A:
代码:
select * from users where username like '%许%';
在Mysql-Front中的8次查询时长为:1.40,0.54,0.54,0.54,0.53,0.55,0.54 共找到960条记载
sql语句B:
代码:
select * from users where username like '许%';
在Mysql-Front中的8次查询时长为:0.53,0.53,0.53,0.54,0.53,0.53,0.54,0.54 共找到836条记载
sql语句C:
代码:
select * from users where username like '%许';
在Mysql-Front中的8次查询时长为:0.51,0.51,0.52,0.52,0.51,0.51,0.52,0.51 共找到7条记载
为username列添加索引:
代码:
create index usernameindex on users(username(6));