python分层聚类集群合并_如何使用scipy的层次聚类为新的观察(测试数据)分配集群...

博客展示了使用Python进行分层聚类的代码,通过生成随机数据进行聚类操作。还提出了如何计算新数据的距离,并使用训练数据中的簇来分配簇的问题,涉及到分层聚类和新数据处理。

from scipy.cluster.hierarchy import dendrogram, linkage,fcluster

import numpy as np

import matplotlib.pyplot as plt

# data

np.random.seed(4711) # for repeatability of this tutorial

a = np.random.multivariate_normal([10, 0], [[3, 1], [1, 4]], size=[100,])

b = np.random.multivariate_normal([0, 20], [[3, 1], [1, 4]], size=[50,])

X = np.concatenate((a, b),)

plt.scatter(X[:,0], X[:,1])

^{pr2}$

max_d = 50

clusters = fcluster(Z, max_d, criterion='distance')

# now if I have new data

a = np.random.multivariate_normal([10, 0], [[3, 1], [1, 4]], size=[10,])

b = np.random.multivariate_normal([0, 20], [[3, 1], [1, 4]], size=[5,])

X_test = np.concatenate((a, b),)

print(X_test.shape) # 150 samples with 2 dimensions

plt.scatter(X_test[:,0], X_test[:,1])

plt.show()

如何计算新数据的距离并使用训练数据中的簇来分配簇?在

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值