机器学习花朵图像分类_半监督学习图像分类综述

本文总结了九种半监督学习算法,包括Pseudo-Label、Temporal Ensembling、Mean Teachers等,详细介绍了每种算法的基本思想、理论依据和应用场景,探讨了如何利用未标注数据进行有效学习,提升模型的泛化能力。
摘要由CSDN通过智能技术生成

总结半监督学习的部分算法:

  • 算法1:Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks

    • 基本算法思路

    • pseudo-label起作用的一些理论依据

  • 算法2:Temporal Ensembling for Semi-Supervised Learning

    • 算法思想

  • 算法3:Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results

    • 算法思想

    • 算法介绍

  • 算法4:Virtual Adversarial Training: a Regularization Method for Supervised and Semi-supervised Learning

    • 算法思想

  • 算法细节

  • 算法5:mixup: BEYOND EMPIRICAL RISK MINIMIZATION

  • 算法6:Interpolation Consistency Training forSemi-Supervised Learning

    • 算法介绍

    • 文中提到的一些理论知识

  • 算法7:MixMatch: A Holistic Approach to Semi-supervise learning

    • 算法的思想

    • 算法流程

  • 算法8:ReMixMatch: Semi-Supervised Learning with Distribution Alignment and Augmentation Anchoring

    • 算法思想

    • 细节

  • 算法9:FixMatch: Simplifying Semi-Supervised Learning withConsistency and Confidence

    • 算法思路

主要对自己阅读过的几篇论文做一下总结:

  • Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks
  • Virtual Adversarial Training: a Regularization Method for Supervised and Semi-supervised Learning
  • Temporal Ensembling for Semi-Supervised Learning
  • Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results
  • mixup: BEYOND EMPIRICAL RISK MINIMIZATION
  • Interpolation Consistency Training forSemi-Supervised Learning
  • MixMatch: A Holistic Approach to Semi-supervise learning
  • ReMixMatch: Semi-Supervised Learning with Distribution Alignment and Augmentation Anchoring
  • FixMatch: Simplifying Semi-Supervised Learning withConsistency and Confidence

这几篇文章是我最近学习这方面资料所已经读过和将要读的一些文章,先看理论知识,然后了解基本的思路之后,再研究代码的实现问题。


算法1:Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks

2013年的一篇文章。

基本算法思路

Pseudo-label是将未标注样本预测来率最大的目标类作为看作真实的标签(也就是经过CNN前向传播,最终softmax输出的最大概率对应的类别作为其pseudo label)。

在训练的过程中,每次权重更新之后,重新计算无标注样本的伪标签作为真实的标签,然后使用与有监督训练分类过程中的交叉熵损失函数,同时对于有标注样本与无标注样本的损失函数进行加权处理。

7a137c80e603c2e928365d4785842b5b.png
pesudolabel_1

alpha时调节二者权重的系数,如果alpha太大,那么消除了有标注样本的作用; 如果太小,那么半监督学习几乎没有意义,因此设置alpha为下面的分段调整的形式,能够得到更好的效果。

fbbed0427417a83191492a6657c9e020.png
pesudolabel_2

pseudo-label起作用的一些理论依据

  • 决策边界应该穿过数据分布的低密度区域

正常的直觉也是这样,当分类决策边界位于数据集的样本低密度区域时,算法能够较好的将数据分割开来,算法分类更加合理,分类准确率更高。

cluster assumption 在这篇2005年的论文中说明了理论。

  • 熵正则化

Entropy Regularization在这篇2006年的文章中说明,应用熵正则化可以从无标注数据的最大后验概率估计中受益,通过最小化类概率的条件熵,可以在不进行密度建模的情况下,实现低密度区域的分离。

0081e2076854217357e774ff0ee42503.png
pesudolabel_3

在这个式子中,熵是未重叠的类别的度量,熵越小,随着类别重叠的越小,数据样本的密度就越小。

最大化后验概率估计:

9ee81193254393963f40e187b36aad8a.png
pesudolabel_4

在这个式子中,第一项时有标注样本的概率最大,第二项时对于无标注样本来说的上最小,使得数据点的密度最小。由此可以得到更好的泛化能力。

  • 以伪标签作为熵正则化进行训练

分别分析上边的式子(18)与式子(15),18的第一项对应15的第一项,18的第二项对应于15的第二项,因此伪标签的方法等价与熵正则化。

使用伪标签的训练,使得无标注数据样本的熵变得更小,使得决策边界处于数据样本密度更低的位置,分类泛化性能更好。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值