图像处理 四个点构成矩形的条件_AI|图像处理原理到应用面面观

本文介绍了图像处理的基础知识,包括像素、图像颜色模型、PIL图像处理库的使用,以及数据可视化中的Matplotlib库。讨论了如何利用四个点来判断是否构成矩形,并通过Python的numpy库进行矩阵计算。同时,文章提到了数据科学与人工智能领域的资源和学习社区。
摘要由CSDN通过智能技术生成
↑↑↑↑↑ 点击上方 蓝色字 关注我们!

0846841389e58fc86b2a0bab1d350b43.png


『运筹OR帷幄』转载

作者:段洵

编者按

图像处理是一门广阔的学科,掌握其基本原理和拓展应用,对科研和工程实践有着不错的创新意义。点滴积累方能成博成家,本文就是一滴纯净自然的知识水珠,愿君细品。

一、图像处理基本知识

二维图形表示:像素和图像

• 像素Pixel:组成图像的基本小方格,具有大小和位置,规则排列

• 像素的属性:形状、大小、位置、颜色值

• 图像Image:由规则排列的像素构成的矩形,可以描绘各种视觉形象

• 图像的属性:分辨率、像素密度、颜色模型

f3496732d333b1285aa3df37d21d7de6.png

16e20754b626aafd0f19eba29bdf3901.png

图像颜色模型:RGB

三原色模型RGB

• 用3个字节表示颜色

• 分别表示红、绿、蓝颜色值

• 0-255,一共有255*255*255种

• 引入第四个字节表示透明度的RGBA模型

• 另一种常用颜色模型HSV

• 辉度、饱和度、亮度

7519ed9d8f88e1eccd7c4d3db0dbf2c4.png

1680d35f01c5bdd558181e9d6282d1c0.png

像素密度:PPI(Pixel Per Inch)

• 每英寸像素点数量

• 密度越高图像越精细

• 视网膜分辨率:人眼在常规距离上无法分辨出视网膜屏幕的像素点,标准视力5.0,看手机的距离,300ppi达到无法分辨像素点

0ffb0a246209680eae585952e20d6d07.png

二、PIL:图像处理库

PIL:图像处理库

• Python 3安装Pillow

• Python上事实标准库

• 功能强大,可以对图像做各种处理,如:缩放、裁剪、旋转、滤镜、文字、调色板等等

32a748c98fe84a4a4aff4e5db2874d50.png

PIL:缩放图像操作

e6ad5b3c9dcd324e1167d14766a35fcc.png

d5eb6b5d3ec235b4c08755b115be6a39.png

PIL查看图像信息

d7696b5fe4e2a4ce6fe30726fd80ce1b.png

95565ea48e396e056803e6cc09c3ea29.png

PIL生成验证码

9049f51bd2134c913c88eebbf8f1e9a0.png

ASCII字符图形艺术

241a32ff20d3c52436a854cba91f8aa1.png

8ae17d977be82d0661f6579ca0dd2d94.png

numpy库

• numpy是Python用于处理大型矩阵的一个速度极快的数学库

• 可以做向量和矩阵的运算,包括各种创建矩阵的方法,以及一般的矩阵运算、求逆、求转置

• 它的很多底层的函数都是用C写的,可以得到在普通Python中无法达到的运行速度

矩阵计算

• 创建矩阵 a = np.matrix([ ])

• 矩阵求逆 a.I

• 矩阵转置 a.T

• 矩阵乘法 a*b或np.dot(a,b)

对象属性

• np.shape 数组形状,矩阵则为n行m列

• np.size 对象元素的个数

• np.dtype 指定当前numpy对象的整体数据类型

c25d7fc7583d60bc81d391f9babf3574.png

三、数据可视化:Matplotlib

Matplotlib

Matplotlib 是 Python的一个绘图库。它包含了大量的工具,可以使用这些工具创建各种图形,包括简单的散点图,折线图,甚至是三维图形、动画等,Python科学计算社区经常使用它完成数据可视化的工作,功能异常强大。

90859ed3dd38ecf5bdf86ff323b13512.png

绘制函数图像基本思路

• 基本思路:通过将图像上一些点的坐标连接起来,即可绘制函数的近似图像,当点越多时,所绘图像越接近函数图像

numpy库的linspace( )函数生成数组:numpy.linspace(,,),生成一个存放等差数列的数组,数组元素为浮点型,包含三个参数,分别是:数列起始值、终止值(默认包含自身)、数列元素个数

matplotlib库的plot( )函数用来画图:可以设定图形颜色、线条线型、以及做标注等

matplotlib:简单图形

6936a7cc41442b793a6669fe487fc3c3.png

57c36a00ae8e55277b93b1d7c9b88a86.png

matplotlib:多个简单图形

f1c608302f700caa6a01985b1d63ba0b.png

0535d876f34c74ee71ab4ef0f907fc7f.png

matplotlib:散点图

17172cdc5d643758db71b4891a2b63f3.png

d4f968a469784204344a9a82bf2b4e78.png

matplotlib:直方图

7fa9600f27367c886f67804e9d45ac68.png

d02392506c169c7d0c3440c3b1cdb89d.png

matplotlib:标题,标签和图例

eae2dfbc3e9cdaedf0c7787ab2ce9aee.png

fdd3e49535548377ff846f71dcfc05ab.png


欢迎社会各界加入『运筹OR帷幄』算法知识星球!

随着算法相关专业热度的提升,考研读博、留学申请、求职的难度也在相应飙升,『运筹OR帷幄』建立了【算法社区】知识星球,涵盖运筹学、数据科学、人工智能、管理科学、工业工程等相关专业,集结社区50W+专业受众的力量,提供给大家一个共同的学习交流平台,结交志同道合的伙伴。

56503490d19bec3d314976a63e94c2e6.png 5721c9a5085f2baf5893100c6ea21df1.png

# 加入知识星球,您将收获以下福利 #

● 依托『运筹OR帷幄』50w+专业受众和50+细分领域硕博微信群的算法技术交流

● 与国内外Top名校教授|博士和名企研发高管一起交流算法相关技术干货

● 海量学界|业界(独家内推)招聘|实习机会发布,申请|求职面试经验交流

● 数学模型|算法|论文|学习资料分享与提问,倡导同行交流,寻找志同道合的“队友”

● 每月开展一次“人气话题”和“人气回答”评选,百元红包奖励分享和互动

● 每月一次“领读人”带队Paper|教学视频|原创技术推文等线上Meetup小组学习

● 享受『运筹OR帷幄』各大城市线下Meetup免费入场资格,拓展人脉

相关文章推荐

上面的文章介绍了多目标跟踪技术,接下来看两个深度学习在文本和视频处理方面有趣、效果不错的应用研究。

点击蓝字标题,即可阅读《AI | AI攒论文指日可待?Transformer生成论文摘要方法已出》

其他:

AI | 你跳宅舞的样子很专业:不,这都是AI合成的结果

本文福利

可以在 公众号后台 回复关键词:“ DS 获取大量由我平台编辑精心整理的数据科学资料,如果觉得有用, 请勿吝啬你的留言和赞哦!

—— 完 ——

79331828b9497ecaf64b281df3b0db12.gif

f92300ddd1f53e5bf40a3737ce02d959.png 897e765080be837593e418813a8f3d73.png 05b4f64d0a7a4b81a467bd793296ce6a.png 2e5da1474e07c7b36d9e8992a9a674f3.gif 62c7c1cc3e56b160ebb63019ccb352ab.gif

文章须知

文章作者:段洵

责任编辑:彭贯军

审核编辑:阿春

微信编辑:玖蓁

本文转载自公众号 数据科学与人工智能(ID:DS_AI_shujuren)

原文链接:图像处理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值