『运筹OR帷幄』转载
作者:段洵
编者按
图像处理是一门广阔的学科,掌握其基本原理和拓展应用,对科研和工程实践有着不错的创新意义。点滴积累方能成博成家,本文就是一滴纯净自然的知识水珠,愿君细品。
一、图像处理基本知识
二维图形表示:像素和图像
• 像素Pixel:组成图像的基本小方格,具有大小和位置,规则排列
• 像素的属性:形状、大小、位置、颜色值
• 图像Image:由规则排列的像素构成的矩形,可以描绘各种视觉形象
• 图像的属性:分辨率、像素密度、颜色模型
图像颜色模型:RGB
三原色模型RGB
• 用3个字节表示颜色
• 分别表示红、绿、蓝颜色值
• 0-255,一共有255*255*255种
• 引入第四个字节表示透明度的RGBA模型
• 另一种常用颜色模型HSV
• 辉度、饱和度、亮度
像素密度:PPI(Pixel Per Inch)
• 每英寸像素点数量
• 密度越高图像越精细
• 视网膜分辨率:人眼在常规距离上无法分辨出视网膜屏幕的像素点,标准视力5.0,看手机的距离,300ppi达到无法分辨像素点
二、PIL:图像处理库
PIL:图像处理库
• Python 3安装Pillow
• Python上事实标准库
• 功能强大,可以对图像做各种处理,如:缩放、裁剪、旋转、滤镜、文字、调色板等等
PIL:缩放图像操作
PIL查看图像信息
PIL生成验证码
ASCII字符图形艺术
numpy库
• numpy是Python用于处理大型矩阵的一个速度极快的数学库
• 可以做向量和矩阵的运算,包括各种创建矩阵的方法,以及一般的矩阵运算、求逆、求转置
• 它的很多底层的函数都是用C写的,可以得到在普通Python中无法达到的运行速度
矩阵计算
• 创建矩阵 a = np.matrix([ ])
• 矩阵求逆 a.I
• 矩阵转置 a.T
• 矩阵乘法 a*b或np.dot(a,b)
对象属性
• np.shape 数组形状,矩阵则为n行m列
• np.size 对象元素的个数
• np.dtype 指定当前numpy对象的整体数据类型
三、数据可视化:Matplotlib
Matplotlib
Matplotlib 是 Python的一个绘图库。它包含了大量的工具,可以使用这些工具创建各种图形,包括简单的散点图,折线图,甚至是三维图形、动画等,Python科学计算社区经常使用它完成数据可视化的工作,功能异常强大。
绘制函数图像基本思路
• 基本思路:通过将图像上一些点的坐标连接起来,即可绘制函数的近似图像,当点越多时,所绘图像越接近函数图像
• numpy库的linspace( )函数生成数组:numpy.linspace(,,),生成一个存放等差数列的数组,数组元素为浮点型,包含三个参数,分别是:数列起始值、终止值(默认包含自身)、数列元素个数
• matplotlib库的plot( )函数用来画图:可以设定图形颜色、线条线型、以及做标注等
matplotlib:简单图形
matplotlib:多个简单图形
matplotlib:散点图
matplotlib:直方图
matplotlib:标题,标签和图例
欢迎社会各界加入『运筹OR帷幄』算法知识星球!
随着算法相关专业热度的提升,考研读博、留学申请、求职的难度也在相应飙升,『运筹OR帷幄』建立了【算法社区】知识星球,涵盖运筹学、数据科学、人工智能、管理科学、工业工程等相关专业,集结社区50W+专业受众的力量,提供给大家一个共同的学习交流平台,结交志同道合的伙伴。
# 加入知识星球,您将收获以下福利 #
● 依托『运筹OR帷幄』50w+专业受众和50+细分领域硕博微信群的算法技术交流
● 与国内外Top名校教授|博士和名企研发高管一起交流算法相关技术干货
● 海量学界|业界(独家内推)招聘|实习机会发布,申请|求职面试经验交流
● 数学模型|算法|论文|学习资料分享与提问,倡导同行交流,寻找志同道合的“队友”
● 每月开展一次“人气话题”和“人气回答”评选,百元红包奖励分享和互动
● 每月一次“领读人”带队Paper|教学视频|原创技术推文等线上Meetup小组学习
● 享受『运筹OR帷幄』各大城市线下Meetup免费入场资格,拓展人脉
相关文章推荐
上面的文章介绍了多目标跟踪技术,接下来看两个深度学习在文本和视频处理方面有趣、效果不错的应用研究。
点击蓝字标题,即可阅读《AI | AI攒论文指日可待?Transformer生成论文摘要方法已出》
其他:
AI | 你跳宅舞的样子很专业:不,这都是AI合成的结果
本文福利
可以在 本公众号后台 回复关键词:“ DS ”获取大量由我平台编辑精心整理的数据科学资料,如果觉得有用, 请勿吝啬你的留言和赞哦!
—— 完 ——
文章须知
文章作者:段洵
责任编辑:彭贯军
审核编辑:阿春
微信编辑:玖蓁
本文转载自公众号 数据科学与人工智能(ID:DS_AI_shujuren)
原文链接:图像处理