可微偏导数一定存在_导数与微分到底有什么区别?

本文探讨了一元函数中可导与可微的关系,指出两者在一元函数中是等价的,但在多元函数中可微性更强。文章解释了取微分意味着用线性函数逼近函数,而导数则提供了关于函数变化率的信息。在多元函数中,函数在某点可微需满足偏导数在该点连续,而仅存在偏导数并不确保可微性。
摘要由CSDN通过智能技术生成

学习过微积分的同学大多会遇到一个问题,那就是,导数和微分到底有什么区别?为什么有时候说函数可导,有时候说函数可微?

几乎所有老师都会跟大家强调,在一元函数里,可导和可微是一回事,是等价的。这就提出了一个问题:对于两个等价的概念,为什么所有教材都会重复讲两遍

事实上,把两个等价概念重复讲两遍,可能有两个原因。一是这两个概念虽然等价,但表达了不同的内涵;二是在以后的推广中,两个概念可能会产生区别。笔者认为,可导与可微既有不同的内涵,也会在函数推广中产生区别。


我们在中学就学过一次函数:

一次函数是一条直线,并且有一个非常好的性质,那就是自变量变化

就变化
。可以这样说:最好研究的函数是幂函数,而最好研究的幂函数就是一次函数。

一次函数简单而优美的性质令分析学家着迷不已,可惜的是,一次函数太少了。分析学家处理的函数几乎都不是一次函数,而是像

这种难以画出图像的函数。

但是,分析学家意识到,(几百年前的)函数都比较光滑。这意味着,尽管在整个区间上,函数是极度扭曲的,但如果将区间缩小,函数的扭曲程度就会降低。进而,分析学家认为,对于一个函数,如果锚定一个点

,在其
比较小的邻域内,可以用一次函数 逼近这个函数。用数学语言写就是:

或者:

其中

是误差函数,注意在加上误差函数后,上式是
严格成立的。

不过这似乎没有什么意义:误差函数本质上就是一次函数

的差,要求误差函数,仍然需要知道
,这陷入了逻辑循环。

分析学家意识到,用线性函数代替函数这件事本身就是不可行的,现在要做的仅仅是在小邻域内逼近函数。因此我们不需要知道误差函数的具体情况,我们只需要让误差函数在充分接近

时,显得无足轻重即可。再观察这个式子,我们发现它由两部分构成:那就是前一部分的线性函数和后一部分的误差。所谓误差无足轻重是指,在
充分接近
时,误差值与估计值之比
充分小。

这样的思想似乎很好理解。譬如说,我们要估计某个值,在现有的技术水平下,可以将误差控制在

以内,而最终估值是
,这说明相对误差在
以内,可以说比较精确了。

不过两者的区别在于,现实的工程技术中,有一个相对误差阈值,满足这个条件就可以了(比如上面的

)。但是在数学理论中,如何确定这个阈值呢?我们尝试将这个要求翻译成数学语言,所谓“在
充分接近
时,误差值与估计值之比
充分小。”,不正是说:

换句话说,只需要误差

的高阶无穷小,我们就可以在
附近比较有效的逼近原函数了。这正是函数可微的定义:
设函数
在点
的某邻域上有定义,若对于任意
,都成立
,其中
是只与点
有关的常数(线性逼近函数的斜率),
是较
高阶的无穷小,则称函数在该点可微。其中
叫做线性主部(主要部分,因为误差很小),记
,称为
的微分。

我们再来说说函数可微的内涵。事实上,

可以对任何函数成立,因为有误差函数保证其精确性。但是如果误差函数太大,这样的逼近是没有意义的。因此,我们限制误差函数只能为一个高阶无穷小量,这就保证了在点附近用线性函数逼近原函数的有效性,或者说这才是
有意义的逼近。由此可见,“误差函数为高阶无穷小量”是逼近的精髓,如若不然,逼近的意义不大。

我们形象地说明对函数取微分的意义:设想有一个函数在某点

可微,这意味着在该点附近用线性函数逼近该函数是可行的。我们拿着一根细长的木棍,将其中点放在
处,然后调整这根木棍的斜率使其等于
,此时,这根木棍在点
附近较好地逼近了函数。

换句话说,对函数取微分是一个具体的动作或者说操作,我们用一根木棍代替了函数。

现在的问题是,常数

如何确定?也就是说,如果一个函数在
可微,我们该用多大斜率的线性函数去逼近它(如何合适地摆放这根木棍)?为此,我们将微分式子两边同时除以
,得到:

,即

由此可见,如果一个函数在点

处可微,那么会存在极限

我们把上面这个极限称为

处的导数,记作
,并称函数在该点可导。

从上面的推导过程可以看出,如果函数在某点可微,那么必然在该点可导。反过来,如果函数在某点可导,也即存在极限:

那么我们可以把上式等价地表示为:

,其中
是无穷小量(

从而:

,显然
的高阶无穷小量(直接做商验证)。令
,这说明函数在该点可微。

换句话说,如果函数在某点可导,那么必然在该点可微。由此可见,可导和可微在一元函数中是等价的。

下面我们来揭示这两个等价的概念,究竟有何不同的内涵。

上文已经描述了取微分的内涵:用线性函数逼近函数,是一种具体的操作。而取导数,是给了点

一个新的对应值,即它的导数值
,实际上这是一个新的映射(函数),即导函数。由于可导和可微是等价的,我们也可以这样理解:取微分是画了一条线性函数,这线性函数能在点附近较好逼近函数;取导数是给出了这条线性函数的斜率。一个是
画出直线,一个是 给出斜率,读者应该好好体会两者内涵的不同。

这便是导数与微分的内涵的不同。

在(二)多元函数中,可微比可导强得多。我们沿用上面的说法,可微是指在点

附近,可以画出一个平面来逼近函数,其误差函数应当是距离
的高阶无穷小。

容易想到,若二元函数在点

可微,这说明函数在任何方向都可导。如若不然,函数在某个方向不可导,则作为一元函数,函数在这个方向不可微,进而函数在这个点是不可微的。这就说明了,可微可以推出可导。

但坐标轴方向上的偏导数存在,不一定表示函数可微。这是因为偏导数仅仅刻画了坐标轴方向的变化状态,而没有给出其他方向的变化状态的任何信息。并且,即使任何方向偏导数存在,函数也不一定可微

这说明,在多元函数中,可微比可导强得多。

至此,我们从内涵和推广两个方面谈了微分和导数的区别,希望读者好好体会,祝好。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值