学习过微积分的同学大多会遇到一个问题,那就是,导数和微分到底有什么区别?为什么有时候说函数可导,有时候说函数可微?
几乎所有老师都会跟大家强调,在一元函数里,可导和可微是一回事,是等价的。这就提出了一个问题:对于两个等价的概念,为什么所有教材都会重复讲两遍?
事实上,把两个等价概念重复讲两遍,可能有两个原因。一是这两个概念虽然等价,但表达了不同的内涵;二是在以后的推广中,两个概念可能会产生区别。笔者认为,可导与可微既有不同的内涵,也会在函数推广中产生区别。
我们在中学就学过一次函数:
一次函数是一条直线,并且有一个非常好的性质,那就是自变量变化
一次函数简单而优美的性质令分析学家着迷不已,可惜的是,一次函数太少了。分析学家处理的函数几乎都不是一次函数,而是像
但是,分析学家意识到,(几百年前的)函数都比较光滑。这意味着,尽管在整个区间上,函数是极度扭曲的,但如果将区间缩小,函数的扭曲程度就会降低。进而,分析学家认为,对于一个函数,如果锚定一个点
或者:
其中
不过这似乎没有什么意义:误差函数本质上就是一次函数
分析学家意识到,用线性函数代替函数这件事本身就是不可行的,现在要做的仅仅是在小邻域内逼近函数。因此我们不需要知道误差函数的具体情况,我们只需要让误差函数在充分接近
这样的思想似乎很好理解。譬如说,我们要估计某个值,在现有的技术水平下,可以将误差控制在
不过两者的区别在于,现实的工程技术中,有一个相对误差阈值,满足这个条件就可以了(比如上面的
换句话说,只需要误差
设函数在点的某邻域上有定义,若对于任意,都成立,其中是只与点有关的常数(线性逼近函数的斜率),是较高阶的无穷小,则称函数在该点可微。其中叫做线性主部(主要部分,因为误差很小),记,称为的微分。
我们再来说说函数可微的内涵。事实上,
我们形象地说明对函数取微分的意义:设想有一个函数在某点
换句话说,对函数取微分是一个具体的动作或者说操作,我们用一根木棍代替了函数。
现在的问题是,常数
令
由此可见,如果一个函数在点
我们把上面这个极限称为
从上面的推导过程可以看出,如果函数在某点可微,那么必然在该点可导。反过来,如果函数在某点可导,也即存在极限:
那么我们可以把上式等价地表示为:
从而:
换句话说,如果函数在某点可导,那么必然在该点可微。由此可见,可导和可微在一元函数中是等价的。
下面我们来揭示这两个等价的概念,究竟有何不同的内涵。
上文已经描述了取微分的内涵:用线性函数逼近函数,是一种具体的操作。而取导数,是给了点
这便是导数与微分的内涵的不同。
在(二)多元函数中,可微比可导强得多。我们沿用上面的说法,可微是指在点
容易想到,若二元函数在点
但坐标轴方向上的偏导数存在,不一定表示函数可微。这是因为偏导数仅仅刻画了坐标轴方向的变化状态,而没有给出其他方向的变化状态的任何信息。并且,即使任何方向偏导数存在,函数也不一定可微。
这说明,在多元函数中,可微比可导强得多。
至此,我们从内涵和推广两个方面谈了微分和导数的区别,希望读者好好体会,祝好。