密码学之计算安全加密相关概念

安全参数 1 n 1^n 1n
  • 算法及复杂度理论中,算法的运行时间为输入长度(数据规模)的函数,因此把安全参数表示为 1 n 1^n 1n的形式,也就是一个长度为 n n n的全一串,用它代表安全参数,提供给攻防双方作为输入参数(它们使用的算法以 1 n 1^n 1n为输入应该在多项式时间内运行完毕)
可忽略函数 n e g l negl negl
  • 定义

∀ p ( ⋅ ) , ∃ N , s t . ∀ n > N , f ( n ) < 1 p ( n ) , f ( n ) i s n e g l i g i b l e \forall p(\cdot), \exist N, st. \forall n \gt N, f(n) \lt \frac{1}{p(n)}, \quad f(n) \quad is \quad negligible p(),N,st.n>N,f(n)<p(n)1,f(n)isnegligible

  • 推论

    1. n e g l 3 ( n ) = n e g l 1 ( n ) + n e g l 2 ( n ) negl_3(n) = negl_1(n) + negl_2(n) negl3(n)=negl1(n)+negl2(n)可忽略
    2. n e g l 4 ( n ) = p ( n ) ∗ n e g l 1 ( n ) negl_4(n) = p(n) * negl_1(n) negl4(n)=p(n)negl1(n)可忽略
私钥加密方案 ( G e n , E n c , D e c
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值