展开全部
不降子序列求的是一个元素的值单调e69da5e887aa62616964757a686964616f31333361306430不降的序列。
传统的状态设计便是使用f[n] 表示到达第n位时的最长不降子序列。
那么转移就是f[n]=max(f[i]+1)
其中要求a[i]<=a[n] && i<=n
那么想要使得复杂度比较优,就不能通过枚举所有满足条件的i来找到最优解。
那么树状数组在其中能起到什么作用呢?
可以起到很快的查询到最优的f[i]的作用。
这里的树状数组是当做桶来使用的。我们可以先考虑桶的情况。
我们现在开一个桶,其下标 x 表示 a[i]=x 的f[i]的最大值。T[x]=max(f[i]); //其中a[i]=x
那么需要转移到f[n]的话,就先找到a[n]在桶中的位置,然后查询所有a[n]之前所存储的最大值中的最大值。也就相当于是一段前缀中的最大值。f[n]=max(T[x]+1); //其中x<=a[n]
在枚举f[n]的同时,也将f[n]的值扔入桶中,方便之后的更新。T[a[n]]=max(T[a[n]],f[n]);
而桶的前缀和是可以用树状数组来优化的,那么查询一段前缀的最大值和更改某个位置的值就可以在log(W)的时间内完成了。void Modify(int x,int d){
for(;x<=SIZE;x+=x&-x)
T[x]=max(T[x],d);
}int Find_Max(int x){
int Max=0;
for(;x;x-=x&-x)
Max=max(Max,T[x]);
return Max;
}for(int i=1;i<=n;i++){
f[i]=Find_Max(a[i])+1;
Modify(a[i],f[i]);
}
特别注意的就是n和SIZE的区别,其中SIZE表示的是最大的a[i]值,因为我们是用a[i]来作为下标储存的。
再啰嗦一下就是当a[i]的范围不是10^6以下,但是n是10^6以下的时候,仍然是可以做的,那么就需要对a[i]进行离散化操作了。