matlab解无解析解微分方程组,微分方程组Matlab的解析解数值解59919.ppt

* 数学实验 Experiments in Mathematics 重庆邮电学院基础数学教学部 微 分 方 程 实验目的 实验内容 MATLAB 2、学会用Matlab求微分方程的数值解. 实验软件 1、学会用Matlab求简单微分方程的解析解. 1、求简单微分方程的解析解. 4、实验作业. 2、求微分方程的数值解. 3、 数学建模实例 求微分方程的数值解 (一)常微分方程数值解的定义 (二)建立数值解法的一些途径 (三)用Matlab软件求常微分方程的数值解 返 回 1、目标跟踪问题一:导弹追踪问题 2、目标跟踪问题二:慢跑者与狗 3、地中海鲨鱼问题 返 回 数学建模实例 微分方程的解析解 求微分方程(组)的解析解命令: dsolve(‘方程1’, ‘方程2’,…‘方程n’, ‘初始条件’, ‘自变量’) To Matlab(ff1) 结 果:u = tg(t-c) 解 输入命令: y=dsolve('D2y+4*Dy+29*y=0','y(0)=0,Dy(0)=15','x') 结 果 为 : y =3e-2xsin(5x) To Matlab(ff2) 解 输入命令 : [x,y,z]=dsolve('Dx=2*x-3*y+3*z','Dy=4*x-5*y+3*z','Dz=4*x-4*y+2*z', 't'); x=simple(x) % 将x化简 y=simple(y) z=simple(z) 结 果 为:x = (c1-c2+c3+c2e -3t-c3e-3t)e2t y = -c1e-4t+c2e-4t+c2e-3t-c3e-3t+(c1-c2+c3)e2t z = (-c1e-4t+c2e-4t+c1-c2+c3)e2t To Matlab(ff3) 返 回 微分方程的数值解 (一)常微分方程数值解的定义 在生产和科研中所处理的微分方程往往很复杂且大多得不出一般解。而在实际上对初值问题,一般是要求得到解在若干个点上满足规定精确度的近似值,或者得到一个满足精确度要求的便于计算的表达式。 因此,研究常微分方程的数值解法是十分必要的。 返 回 (二)建立数值解法的一些途径 1、用差商代替导数 若步长h较小,则有 故有公式: 此即欧拉法。 2、使用数值积分 对方程y’=f(x,y), 两边由xi到xi+1积分,并利用梯形公式,有: 实际应用时,与欧拉公式结合使用: 此即改进的欧拉法。 故有公式: 3、使用泰勒公式 以此方法为基础,有龙格-库塔法、线性多步法等方法。 4、数值公式的精度 当一个数值公式的截断误差可表示为O(hk+1)时(k为正整数,h为步长),称它是一个k阶公式。 k越大,则数值公式的精度越高。 欧拉法是一阶公式,改进的欧拉法是二阶公式。 龙格-库塔法有二阶公式和四阶公式。 线性多步法有四阶阿达姆斯外插公式和内插公式。 返 回 (三)用Matlab软件求常微分方程的数值解 [t,x]=solver(’f’,ts,x0,options) ode45 ode23 ode113ode15sode23s 由待解方程写成的m-文件名 ts=[t0,tf],t0、tf为自变量的初值和终值 函数的初值 ode23:组合的2/3阶龙格-库塔-芬尔格算法 ode45:运用组合的4/5阶龙格-库塔-芬尔格算法 自变量值 函数值 用于设定误差限(缺省时设定相对误差10-3, 绝对误差10-6), 命令为:options=odeset(’reltol’,rt,’abstol’,at), rt,at:分别为设定的相对误差和绝对误差. 1、在解n个未知函数的方程组时,x0和x均为n维向量,m-文件中的待解方程组应以x的分量形式写成. 2、使用Matlab软件求数值解时,高阶微分方程必须等价地变换成一阶微分方程组. 注意: 解: 令 y1=x,y2=y1’ 1、建立m-文件vdp1000.m如下: function dy=vdp1000(t,y) dy=zeros(2,1); dy(1)=y(2); dy(2)=1000*(1-y(1)^2)*y(2)-y(1); 2、取t0=0,tf=3000,输入命令: [T,Y]=ode15s('vdp1000',[0 3000],[2 0]); plot(T,Y(:,1),'-') 3、结果如图 To Matlab(ff4)

动物目标检测数据集 一、基础信息 数据集名称:动物目标检测数据集 图片数量: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 总计:12,182张图片 分类类别: Bear(熊)、Cat(猫)、Cattle(牛)、Chicken(鸡)、Deer(鹿)、Dog(狗)、Elephant(大象)、Horse(马)、Monkey(猴子)、Sheep(绵羊) 标注格式: YOLO格式,包含归一化坐标的边界框和数字编码类别标签,支持目标检测模型开发。 数据特性: 涵盖俯拍视角、地面视角等多角度动物影像,适用于复杂环境下的动物识别需求。 二、适用场景 农业智能监测: 支持畜牧管理系统开发,自动识别牲畜种类并统计数量,提升养殖场管理效率。 野生动物保护: 应用于自然保护区监控系统,实时检测特定动物物种,辅助生态研究和盗猎预警。 智能养殖设备: 为自动饲喂系统、健康监测设备等提供视觉识别能力,实现精准个体识别。 教育研究工具: 适用于动物行为学研究和计算机视觉教学,提供标准化的多物种检测数据集。 遥感图像分析: 支持航拍图像中的动物种群分布分析,适用于生态调查和栖息地研究。 三、数据集优势 多物种覆盖: 包含10类常见经济动物和野生动物,覆盖陆生哺乳动物与家禽类别,满足跨场景需求。 高密度标注: 支持单图多目标检测,部分样本包含重叠目标标注,模拟真实场景下的复杂检测需求。 数据平衡性: 经分层抽样保证各类别均衡分布,避免模型训练时的类别偏差问题。 工业级适用性: 标注数据兼容YOLO系列模型框架,支持快速迁移学习和生产环境部署。 场景多样性: 包含白天/夜间、近距离/远距离、单体/群体等多种拍摄条件,增强模型鲁棒性。
数据集介绍:农场与野生动物目标检测数据集 一、基础信息 数据集名称:农场与野生动物目标检测数据集 图片规模: - 训练集:13,154张图片 - 验证集:559张图片 - 测试集:92张图片 分类类别: - Cow(牛):农场核心牲畜,包含多种姿态和场景 - Deer(鹿):涵盖野外环境中的鹿类目标 - Sheep(羊):包含不同品种的绵羊和山羊 - Waterdeer(獐):稀有野生动物目标检测样本 标注格式: YOLO格式标准标注,含精确边界框坐标和类别标签 数据特征: 包含航拍、地面拍摄等多视角数据,适用于复杂环境下的目标检测任务 二、适用场景 智慧农业系统开发: 支持畜牧数量统计、牲畜行为监测等农业自动化管理应用 野生动物保护监测: 适用于自然保护区生物多样性监测系统的开发与优化 生态研究数据库构建: 为动物分布研究提供标准化视觉数据支撑 智能畜牧管理: 赋能养殖场自动化监控系统,实现牲畜健康状态追踪 多目标检测算法验证: 提供跨物种检测基准,支持算法鲁棒性测试 三、数据集优势 多场景覆盖能力: 整合农场环境与自然场景数据,包含光照变化、遮挡等真实场景 精确标注体系: - 经专业团队双重校验的YOLO格式标注 - 边界框精准匹配动物形态特征 数据多样性突出: - 包含静态、动态多种动物状态 - 涵盖个体与群体检测场景 任务适配性强: - 可直接应用于YOLO系列模型训练 - 支持从目标检测扩展到行为分析等衍生任务 生态研究价: 特别包含獐等稀有物种样本,助力野生动物保护AI应用开发
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值