Matlab求常微分方程组的数值解

本文详细介绍了在Matlab中求解一阶、二阶微分方程及微分方程组的数值解法,重点讲解了ode45()函数的应用,并通过实例演示了如何处理不同类型的微分方程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

上篇博客介绍了Matlab求解常微分方程组解析解的方法:博客地址
微分方程组复杂时,无法求出解析解时,就需要求其数值解,这里来介绍。
以下内容按照Matlab官方文档提供的方程来展开(提议多看官方文档)

介绍一下核心函数ode45()

一般形式:[t,y] = ode45(odefun,tspan,y0) 其中 tspan = [t0 tf]
功能介绍:求微分方程组 y′=f(t,y) 从 t0 到 tf 的积分,初始条件为 y0。解数组 y 中的每一行都与列向量 t 中返回的值相对应。

1. 一阶微分方程求解(简单调用即可)

方程:y’=2*t
代码

tspan=[1 6]; %定义自变量x的取值空间为1-6
y0=0;%定义因变量的初值,当x=1(x取值空间的第一个数)时,y0=0
[t,y]=ode45(@(t,y) 2*t,tspan,y0); %定义函数y'=2*t,使用ode45求解
plot(t,y,'-o'); %绘制求得的数值曲线

说明:简单的odefun参数就是这个形式,@(x,y) fu

评论 40
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值