在学习圆锥曲线时,几何性质是重点内容之一,三种圆锥曲线都有焦点,双曲线有渐近线,抛物线有准线。那么抛物线有没有类似渐近线的性质?能否从其它角度出发叙述渐近线的意义?本题的灵感来源就在于此。本文只讲解问题的立意,我将解答留给下一篇文章。
2. 已知抛物线
(1) 讨论
(2) 设
本题满分
第一问非常基础,但是也有少数人没有在解答中体现出正确的逻辑过程。圆锥曲线与直线的位置关系是主干知识,将圆锥曲线与直线的方程联立,消元得到一个二次方程,这时二次方程的判别式直接决定了圆锥曲线与直线的交点数目。
如果你没有完成第一问,就应该好好反思自己有没有重视高中数学的主干知识。只要你还想在高考获得可以接受的分数,就不能脱离课本,在不熟悉最基本的理论时就去阅读考题的解答。否则就容易陷入思而不学,进而产生大量的错觉。
渐近线可以看作是切线的极限。我们考虑双曲线
为了方便,我利用参数方程,即
取
当
这就是
从这个例子中,你可以看出为什么我说渐近线可以看作是切线的极限。
但是抛物线的情况呢?我们将会发现,抛物线切线的极限位于无穷远处,这就是为什么抛物线没有渐近线。不过,切线的方向有极限,我们称它为渐进方向。为了更好地让你理解这一点,我出了这道题的第二问,希望你去发现并论证所谓的无穷远。
在解答这道题时,不仅要熟悉抛物线的焦点、平行直线的距离等解析几何的基础知识,还要综合运用其它方面的知识。新课改提出了探究性和知识与问题的重组,我出这道题也是在体现这些方面的观点。毕竟,只有事先从过程到结果都是未知的,才符合日常的工作生活的实际。