求抛物线和直线交点_你是否考虑过抛物线的“渐进性”?2020年杨树森高中数学试题 (2) (2) 立意...

本文围绕抛物线展开,探讨其是否有类似渐近线的性质,指出渐近线可看作切线的极限,而抛物线切线极限在无穷远处,无渐近线但有渐进方向。还提及圆锥曲线与直线位置关系,通过联立方程用判别式判断交点数目,出题体现新课改探究性等观点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在学习圆锥曲线时,几何性质是重点内容之一,三种圆锥曲线都有焦点,双曲线有渐近线,抛物线有准线。那么抛物线有没有类似渐近线的性质?能否从其它角度出发叙述渐近线的意义?本题的灵感来源就在于此。本文只讲解问题的立意,我将解答留给下一篇文章。

2. 已知抛物线

的焦点作斜率为
的直线

(1) 讨论
的交点数目;

(2) 设
的斜率为
的切线,求
的距离的取值范围。

本题满分

分,平均分
分,难度系数
区分度
其中第一问满分
分,平均分
分,难度系数
区分度
第二问满分
分,平均分
分,难度系数
区分度

第一问非常基础,但是也有少数人没有在解答中体现出正确的逻辑过程。圆锥曲线与直线的位置关系是主干知识,将圆锥曲线与直线的方程联立,消元得到一个二次方程,这时二次方程的判别式直接决定了圆锥曲线与直线的交点数目。

如果你没有完成第一问,就应该好好反思自己有没有重视高中数学的主干知识。只要你还想在高考获得可以接受的分数,就不能脱离课本,在不熟悉最基本的理论时就去阅读考题的解答。否则就容易陷入思而不学,进而产生大量的错觉。

渐近线可以看作是切线的极限。我们考虑双曲线

的渐近线。

为了方便,我利用参数方程,即

的方程为

上位于第一象限的点
对应
处的切线方程

时,成立
代入切线方程得到

这就是

的一个渐近线。

从这个例子中,你可以看出为什么我说渐近线可以看作是切线的极限。

但是抛物线的情况呢?我们将会发现,抛物线切线的极限位于无穷远处,这就是为什么抛物线没有渐近线。不过,切线的方向有极限,我们称它为渐进方向。为了更好地让你理解这一点,我出了这道题的第二问,希望你去发现并论证所谓的无穷远。

在解答这道题时,不仅要熟悉抛物线的焦点、平行直线的距离等解析几何的基础知识,还要综合运用其它方面的知识。新课改提出了探究性知识与问题的重组,我出这道题也是在体现这些方面的观点。毕竟,只有事先从过程到结果都是未知的,才符合日常的工作生活的实际。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值