# -*- coding: utf-8 -*-
import multiprocessing
import time
def func(msg):
print('msg: ', msg)
time.sleep(1)
print('********')
return 'func_return: %s' % msg
if __name__ == '__main__':
# apply_async
print('\n--------apply_async------------')
pool = multiprocessing.Pool(processes=4)
results = []
for i in range(10):
msg = 'hello world %d' % i
result = pool.apply_async(func, (msg, ))
results.append(result)
print('apply_async: 不堵塞')
for i in results:
i.wait() # 等待进程函数执行完毕
for i in results:
if i.ready(): # 进程函数是否已经启动了
if i.successful(): # 进程函数是否执行成功
print(i.get()) # 进程函数返回值
# apply
print('\n--------apply------------')
pool = multiprocessing.Pool(processes=4)
results = []
for i in range(10):
msg = 'hello world %d' % i
result = pool.apply(func, (msg,))
results.append(result)
print('apply: 堵塞') # 执行完func才执行该句
pool.close()
pool.join() # join语句要放在close之后
print(results)
# map
print('\n--------map------------')
args = [1, 2, 4, 5, 7, 8]
pool = multiprocessing.Pool(processes=5)
return_data = pool.map(func, args)
print('堵塞') # 执行完func才执行该句
pool.close()
pool.join() # join语句要放在close之后
print(return_data)
# map_async
print('\n--------map_async------------')
pool = multiprocessing.Pool(processes=5)
result = pool.map_async(func, args)
print('ready: ', result.ready())
print('不堵塞')
result.wait() # 等待所有进程函数执行完毕
if result.ready(): # 进程函数是否已经启动了
if result.successful(): # 进程函数是否执行成功
print(result.get()) # 进程函数返回值
线程池:
线程池的使用方式和进程池类似。
实例代码如下:
# -*- coding: utf-8 -*-
from multiprocessing.dummy import Pool as ThreadPool
import time
def fun(msg):
print('msg: ', msg)
time.sleep(1)
print('********')
return 'fun_return %s' % msg
# map_async
print('\n------map_async-------')
arg = [1, 2, 10, 11, 18]
async_pool = ThreadPool(processes=4)
result = async_pool.map_async(fun, arg)
print(result.ready()) # 线程函数是否已经启动了
print('map_async: 不堵塞')
result.wait() # 等待所有线程函数执行完毕
print('after wait')
if result.ready(): # 线程函数是否已经启动了
if result.successful(): # 线程函数是否执行成功
print(result.get()) # 线程函数返回值
# map
print('\n------map-------')
arg = [3, 5, 11, 19, 12]
pool = ThreadPool(processes=3)
return_list = pool.map(fun, arg)
print('map: 堵塞')
pool.close()
pool.join()
print(return_list)
# apply_async
print('\n------apply_async-------')
async_pool = ThreadPool(processes=4)
results =[]
for i in range(5):
msg = 'msg: %d' % i
result = async_pool.apply_async(fun, (msg, ))
results.append(result)
print('apply_async: 不堵塞')
# async_pool.close()
# async_pool.join()
for i in results:
i.wait() # 等待线程函数执行完毕
for i in results:
if i.ready(): # 线程函数是否已经启动了
if i.successful(): # 线程函数是否执行成功
print(i.get()) # 线程函数返回值
# apply
print('\n------apply-------')
pool = ThreadPool(processes=4)
results =[]
for i in range(5):
msg = 'msg: %d' % i
result = pool.apply(fun, (msg, ))
results.append(result)
print('apply: 堵塞')
print(results)
计算多的用多进程
io多的用多线程