python多进程并发+pool多线程+共享变量

一.多进程

当计算机运行程序时,就会创建包含代码和状态的进程。这些进程会通过计算机的一个或多个CPU执行。不过,同一时刻每个CPU只会执行一个进程,然后不同进程间快速切换,给我们一种错觉,感觉好像多个程序在同时进行。例如:有一个大型工厂,该工厂负责生产电脑,工厂有很多的车间用来生产不同的电脑部件。每个车间又有很多工人互相合作共享资源来生产某个电脑部件。这里的工厂相当于一个爬虫工程,每个车间相当于一个进程每个工人就相当于线程线程是CPU调度的基本单元。

也就是进程间是独立的,这表现在内存空间,上下文环境;而线程运行在进程空间内.也就是同一进程产生的线程共享同一内存空间.

需要注意的是单核CPU系统中,真正的并发是不可能的.

1.顺序执行 

2.多进程并发 注意除了时间的加速意外也要看看函数返回值的写法,带有多进程的map,是返回一个列表

import requests
import re
import time
from multiprocessing import Pool
from multiprocessing.dummy import Pool as ThreadPool
def spyder(url):
    # res = []
    res = {'init:':'hello'}
    print('hahah:{}'.format(url))
    time.sleep(1)
    # res.append(url)
    res.update({'entr:'+url:url})
    return res

def use_process():
    urls = ["https://www.qiushibaike.com/text/page/{}/".format(str(i)) for i in range(0, 4)]

    start_1 = time.time()
    #获取函数返回结果
    res1 = []
    for url in urls:
        res_ = spyder(url)
        res1.append(res_)
    end_1 = time.time()
    print("单进程:", end_1 - start_1)
    print('res1:', res1)

    # 获取函数返回结果
    #  进程池
    start_2 = time.time()
    pool = Pool(processes=2)
    res2 = pool.map(spyder, urls)
    pool.close()
    pool.join()
    print('res2:', res2)
    end_2 = time.time()
    print("2进程:", end_2 - start_2)

    # 获取函数返回结果
    # 进程池
    start_3 = time.time()
    pool = Pool(processes=4)
    res3 = pool.map(spyder, urls)
    pool.close()
    pool.join()
    print('res2:', res3)
    end_3 = time.time()
    print("4进程:", end_3 - start_3)
if __name__ == "__main__":
    use_process()

二.多线程

实际上由于GIL(全局解释器锁)的限制,哪个线程想要执行代码就需要去申请锁,否则只能等着,所以这个锁阻碍了真正的多线程并发,这是解释器cpython的锅,一般不推荐用多线程,而是用多进程multiprocess来绕过GIL.

2.1 thread多线程

import time
import _thread
from threading import Thread
# 使用线程锁,防止线程死锁
mutex = _thread.allocate_lock()
def test(d_num):
    d_num.append(89)
    print("test: %s"% str(d_num))
def test1(d_num):
    print("test1: %s"% str(d_num))
def main():
    d_num = [100, 58]
    t1 = Thread(target=test, args=(d_num,))
    t2 = Thread(target=test1, args=(d_num,))
    t1.start()
    time.sleep(1)
    t2.start()
    time.sleep(1)

if __name__ == '__main__':
    main()

2.2 多线程队列版

import time
import _thread
from threading import Thread
import queue
# 使用线程锁,防止线程死锁
mutex = _thread.allocate_lock()
frame_queue = queue.Queue()
def test(d_num):
    print("test: %s" % str(d_num))
    for i in range(d_num):
        frame_queue.put(i)

def test1():
    while 1:
        if frame_queue.empty() != True:
            # 从队列中取出图片
            value = frame_queue.get()
            print('==value:', value)
            time.sleep(1)
        else:
            break
def main():
    d_num = 10
    t1 = Thread(target=test, args=(d_num,))
    t1.start()
    t2 = Thread(target=test1)
    t2.start()

if __name__ == '__main__':
    main()

2.3 注意传参与多进程的区别,线程池

from functools import partial
from itertools import repeat
from multiprocessing import Pool, freeze_support


def func(a, b):
    return a + b

def main():
    a_args = [1, 2, 3]
    second_arg = 1
    with Pool() as pool:
        L = pool.starmap(func, [(1, 1), (2, 1), (3, 1)])
        print('L:', L)
        M = pool.starmap(func, zip(a_args, repeat(second_arg)))
        print('M:', M)
        N = pool.map(partial(func, b=second_arg), a_args)
        print('N:', N)
main()

import requests
import re
import time
from multiprocessing import Pool
from multiprocessing.dummy import Pool as ThreadPool
def spyder(url):
    # res = []
    res = {'init:':'hello'}
    print('hahah:{}'.format(url))
    time.sleep(1)
    # res.append(url)
    res.update({'entr:'+url:url})
    return res

def use_process():
    urls = ["https://www.qiushibaike.com/text/page/{}/".format(str(i)) for i in range(0, 4)]

    start_1 = time.time()
    #获取函数返回结果
    res1 = []
    for url in urls:
        res_ = spyder(url)
        res1.append(res_)
    end_1 = time.time()
    print("单进程:", end_1 - start_1)
    print('res1:', res1)

    # 获取函数返回结果
    #  进程池
    start_2 = time.time()
    pool = Pool(processes=2)
    res2 = pool.map(spyder, urls)
    pool.close()
    pool.join()
    print('res2:', res2)
    end_2 = time.time()
    print("2进程:", end_2 - start_2)

    # 获取函数返回结果
    # 进程池
    start_3 = time.time()
    pool = Pool(processes=4)
    res3 = pool.map(spyder, urls)
    pool.close()
    pool.join()
    print('res2:', res3)
    end_3 = time.time()
    print("4进程:", end_3 - start_3)

def use_threadpool():
    urls = [["https://www.qiushibaike.com/text/page/{}/".format(str(i))] for i in range(0, 4)]
    print('urls:', urls)
    # 线程池
    start = time.time()
    pool = ThreadPool(processes=4)
    res = pool.starmap(spyder, urls)
    pool.close()
    pool.join()
    end = time.time()
    print('res:', res)
    print("4线程:", end - start)
if __name__ == "__main__":
    # use_process()
    use_threadpool()

实际应用将图片路径和名字传入,用zip方式打包传参

import os

import cv2
import time
import itertools
from multiprocessing.dummy import Pool as ThreadPool

SIZE = (75,75)
SAVE_DIRECTORY='thumbs'
def save_img(filename,save_path):
    save_path+= filename.split('/')[-1]
    im = cv2.imread(filename)
    im=cv2.resize(im,SIZE)
    cv2.imwrite(save_path,im)

if __name__ == '__main__':
    path='./data/testlabel'
    print(path)
    output_path='./data/thumbs/'
    if not os.path.exists(output_path):
        os.mkdir(output_path)
    print(output_path)
    imgs_list_path=[os.path.join(path,i) for i in os.listdir(path)]
    print(len(imgs_list_path))
    start_time=time.time()
    pool = ThreadPool(processes=8)
    print(list(zip(imgs_list_path,[output_path]*len(imgs_list_path))))
    
    pool.starmap(save_img,zip(imgs_list_path,[output_path]*len(imgs_list_path)))

    pool.close()
    pool.join()
    end_time=time.time()
    print('use time=',end_time-start_time)

三.共享变量 

import numpy as np
from multiprocessing import shared_memory
from multiprocessing import Process
from multiprocessing.managers import SharedMemoryManager
import time
import glob
import os
import shutil

smm = SharedMemoryManager()
smm.start()
screen_img = np.zeros((480, 640, 3), dtype=np.uint8)
share_screen_img = smm.SharedMemory(screen_img.nbytes)


def change(name):
    a = np.array([0, 0, 0, 0, 0, 0])
    existing_shm = shared_memory.SharedMemory(name=name)
    b = np.ndarray((6, ), dtype=np.int64, buffer=existing_shm.buf)
    b[:] = a[:]
    print("changed")


def show(name):
    while True:
        existing_shm = shared_memory.SharedMemory(name=name)
        show_img = np.ndarray((480, 640, 3),
                              dtype=np.uint8,
                              buffer=existing_shm.buf)
        print('show_img:', show_img.sum())
        time.sleep(0.30)


if __name__ == '__main__':
    tmp = np.ndarray(screen_img.shape,
                     dtype=screen_img.dtype,
                     buffer=share_screen_img.buf)
    print('init tmp:', tmp.sum())
    # p1 = Process(target=change, args=(sm.name, ))
    p2 = Process(target=show, args=(share_screen_img.name, ))
    p2.start()
    time.sleep(2)
    tmp[:] = np.ones((480, 640, 3), dtype=np.uint8)
    # p1.join()
    # print('final b:', b)
    p2.join()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值