本文将介绍如何使用darknet框架下的yolo v3制作第一个属于自己的深度学习目标检测模型。
Why YOLO?
You only look once (YOLO)是顶尖的实时目标检测模型。
下面是YOLO与其他模型的性能对比。
可以看出YOLO 具有耗时较少,准确率不低的优点。
配置环境
建议环境:Win10、支持CUDA的Nvidia显卡、Python3、CUDA>=9.0、CUDNN>=7.0、VS2015、OPENCV<4.0
编译时可能遇到形如compute_75的错误,解决方法:用文本的方式打开darknet.vcxproj文件,将所有的compute_75替换为compute_50,将所有的sm_75替换为sm_50,具体替换成什么,请参考Compatibility
YOLO初体验
基本用法
这一步我们尝试使用下刚刚编译好的YOLO。
由于可能缺少模型的权重文件,我们从这里下载YOLO-V3权重文件(236MB)
然后将目录切换到D:\darknet-master\build\darknet\x64,打开命令行,输入以下语句:
1./darknet.exe detect cfg/yolov3.cfg yolov3.weights data/dog.jpg
正常情况下会得到以下效果:
同时也会得到predictions.jpg保存在相同目录下。
运行一次模型需要:
配置文件(.cfg)
权重文件(.weights)
被测图片
同时尝试将上述语句最后的data/dog.jpg分别替换为data/eagle.jpg, data/dog.jpg, data/person.jpg, or data/horses.jpg,查看效果吧。
上述语句中的detect是一种缩写,上述语句也等同于
1./darknet.exe detector test cfg/coco.data cfg/yolov3.cfg yolov3.weights data/dog.jpg
当然也可以载入一次模型进行多次预测,输入以下指令(就是去掉图片选项):
1./darknet.exe detect cfg/yolov3.cfg yolov3.weights
然后它会提示你输入图片路径:
输入路径后回车,按Ctrl+C退出输入状态。
除此之外,YOLO还提供设定阈值方法来剔除置信度过低的结果。例如若想显示所有结果则使用以下代码(此处阈值设置为0):
1./darknet.exe detect cfg/yolov3.cfg yolov3.weights data/dog.jpg -thresh 0
默认的阈值是0.25。
Tiny YOLOv3
首先下载Tiny YOLOv3的权重文件(34MB),丢到与darknet.exe同级的目录下。
使用以下命令运行:
1./darknet.exe detect cfg/yolov3-tiny.cfg yolov3-tiny.weights data/dog.jpg
可以看到tiny版本的精度略低,但是速度快。
使用摄像头或视频
使用以下命令在摄像头0(OPENCV默认使用摄像头0)运行Tiny YOLOv3
1./darknet.exe detector demo cfg/coco.data cfg/yolov3-tiny.cfg yolov3-tiny.weights
使用参数-c 指定使用哪一只摄像头。
或者使用以下命令实现Tiny YOLOv3对视频的目标检测:
1./darknet detector demo cfg/coco.data cfg/yolov3.cfg yolov3.weights
训练自己的YOLO
这里我们我们使用Pascal VOC2007数据集训练YOLOv3-tiny模型。
关于该数据集的介绍,可以查看这篇文章
数据准备
为了训练YOLO我们需要2007年的VOC数据集,可以从这里下载。下载完后解压,解压完训练数据都在VOCdevkit/文件夹下。
训练YOLO需要使用特别格式的标签数据文件,它是一个.txt文本文件。
这个.txt文件的每一行是一个标签,一个文件对应一张图片,它看起来像这样:
注意此处的中心x、中心y、框width和框height是相对于图片宽度和高度的值,都是不大于1的小数。
转换公式:
为了得到这些.txt文件,我们可以方便地通过运行一个叫voc_label.py的脚本来生成。
脚本的内容如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
sets = [('2007', 'train'), ('2007', 'val'), ('2007', 'test')]
classes = [
"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat",
"chair", "cow", "diningtable", "dog", "horse", "motorbike", "person",
"pottedplant", "sheep", "sofa", "train", "tvmonitor"
]
# 位置坐标转换
def convert(size, box):
dw = 1. / (size[0])
dh = 1. / (size[1])
x = (box[0] + box[1]) / 2.0 - 1
y = (box[2] + box[3]) / 2.0 - 1
w = box[1] - box[0]
h = box[3] - box[2]
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return (x, y, w, h)
# label转换
def convert_annotation(year, image_id):
in_file = open('VOC%s/Annotations/%s.xml' % (year, image_id))
out_file = open('VOC%s/labels/%s.txt' % (year, image_id), 'w')
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text),
float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
bb = convert((w, h), b)
out_file.write(
str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
wd = getcwd()
for year, image_set in sets:
if not os.path.exists('VOC%s/labels/' % (year)):
os.makedirs('VOC%s/labels/' % (year))
image_ids = open('VOC%s/ImageSets/Main/%s.txt' %
(year, image_set)).read().strip().split()
list_file = open('%s_%s.txt' % (year, image_set), 'w')
for image_id in image_ids:
list_file.write('%s/VOC%s/JPEGImages/%s.jpg\n' % (wd, year, image_id))
convert_annotation(year, image_id)
list_file.close()
os.system("cat 2007_train.txt 2007_val.txt > train.txt")
os.system("cat 2007_train.txt 2007_val.txt 2007_test.txt > train.all.txt")
将脚本保存到与VOC2007文件夹同级的目录,命名为voc_label.py,然后在此目录下打开命令行,执行:
1python voc_label.py
很快,这个脚本会生成一些必要的文件。它生成了很多标签文件,位于VOCdevkit/VOC2007/labels/路径下。
并且在与VOC2007同级的目录下,你应该会看到如下的文件:
1
2
3
4
52007_train.txt
2007_val.txt
2007_test.txt
train.txt
train.all.txt
如果是自己采集的数据,需要标注,请使用LabelImg或Yolo_mark工具,以生成YOLO格式的文本文件。然后将图片的路径汇总到一个文本文件,如train.txt、val.txt和test.txt里,一行一个图片路径。
准备模型
新建个文件夹,我们用来保存与模型有关的数据。我这里路径为:D:/model/voc_model/
我这里VOC2007文件夹位于:D:/dataset/VOCdevkit/,Darknet.exe位于D:/darknet-master/build/darknet/x64/
准备权重文件
首先下载默认的权重文件到你刚刚新建的模型文件夹(我这里是D:/model/voc_model/):
默认权重文件
在模型文件夹运行如下指令,获取预训练的权重文件yolov3-tiny.conv.15,使用如下命令:
1D:/darknet-master/build/darknet/x64/darknet.exe partial D:/darknet-master/build/darknet/x64/cfg/yolov3-tiny.cfg yolov3-tiny.weights yolov3-tiny.conv.15 15
其他预训练权重可以从这里下载
修改配置文件在模型文件夹创建一份VOC2007.names文本文件,其中该文件的每一行都是种类的名字,应该使得行数等于种类数classes的值。
在模型文件夹创建一份VOC2007.data文本文件,填入以下内容。classes是种类的个数、train是训练图片路径的文本文件,valid是验证图片路径的文本文件,names是种类名字的文件,backup路径则用于保存备份的权重文件(每迭代100次保存一次文件(带_last后缀),每1000次保存一次文件(带_xxxx后缀))。
如果没有验证集,则设置valid为与train相同的值即可,那么将测试在训练集上的精度。
1
2
3
4
5classes = 20
train = D:/dataset/VOCdevkit/train.txt
valid = D:/dataset/VOCdevkit/2007_test.txt
names = VOC2007.names
backup = backup/
复制D:/darknet-master/build/darknet/x64/cfg/yolov3-tiny_obj.cfg文件,在模型文件夹另存为yolov3-tiny-obj.cfg,然后按照下述规则修改该文件:
修改使得batch=64
修改使得subdivisions=8
修改所有的classes值为20(这里classes是目标检测物体的种类个数)
修改所有位于行[yolo]之上的[convolutional]层的filters值为:$ filters = (classes + 5) * 3 $, filters的值需要计算出来再填入。注意,这不是修改所有filters的值,仅仅是修改恰好位于[yolo]这行之上该层的filters的值,可能需要修改多处。
如果你要修改输入图像的width和height值,请注意这两个值必须能被32整除。
训练模型
在模型文件夹运行命令:
1D:/darknet-master/build/darknet/x64/darknet.exe detector train VOC2007.data yolov3-tiny-obj.cfg yolov3-tiny.conv.15
如果你在avg loss里看到nan,意味着训练失败;在其他地方出现nan则是正常的。
如果出错并显示Out of memory,尝试将.cfg文件的subdivisions值增大(建议为$ 2^n $)。
使用附加选项-dont_show来关闭训练时默认显示的损失曲线窗口
使用附加选项-map来显示mAP值
训练完成后的权重将保存于你在.data文件中设置的backup值路径下
你可以从backup值的路径下找到你的备份权重文件,并以此接着训练模型
训练完成后使用命令darknet.exe detector test data/obj.data yolo-obj.cfg yolo-obj_8000.weights针对输入的图片查看识别结果。
在COCO上训练YOLO
从这里下载COCO数据集。
也可以使用位于scripts/get_coco_dataset.sh的脚本来下载COCO数据集。
1
2
3cp scripts/get_coco_dataset.sh data
cd data
bash get_coco_dataset.sh # 会下载到data文件夹下
然后修改cfg/coco.data文件,指定你的数据路径。
接着修改cfg/yolo.cfg文件,配置训练使用的参数。
然后训练:
1./darknet detector train cfg/coco.data cfg/yolov3.cfg darknet53.conv.74
如果你想使用4个GPU来跑,在上述语句附加参数-gpus 0,1,2,3即可
如果你想从检查点停止或重新运行,使用:
1./darknet detector train cfg/coco.data cfg/yolov3.cfg backup/yolov3.backup
YOLO进阶
预训练模型下载地址
GitHub预训练模型
官网 的 Performance on the COCO Dataset部分
配置文件地址
位于路径darknet/cfg/下
官网 的 Performance on the COCO Dataset部分
特殊模型
命令行语法
在Linux使用 ./darknet而不是 darknet.exe,像这样:./darknet detector test ./cfg/coco.data ./cfg/yolov3.cfg ./yolov3.weights。在Linux中可执行文件 ./darknet 在根目录,而 Windows则在/build/darknet/x64路径下。
Yolo v3 COCO - 图像: darknet.exe detector test cfg/coco.data cfg/yolov3.cfg yolov3.weights -thresh 0.25
另一种方法 Yolo v3 COCO - 图像: darknet.exe detect cfg/yolov3.cfg yolov3.weights -i 0 -thresh 0.25
输出物体坐标: darknet.exe detector test cfg/coco.data yolov3.cfg yolov3.weights -ext_output dog.jpg
Yolo v3 COCO - 视频:darknet.exe detector demo cfg/coco.data cfg/yolov3.cfg yolov3.weights -ext_output test.mp4
Yolo v3 COCO - 摄像头0: darknet.exe detector demo cfg/coco.data cfg/yolov3.cfg yolov3.weights -c 0
Yolo v3 COCO - 网络摄像头: darknet.exe detector demo cfg/coco.data cfg/yolov3.cfg yolov3.weights http://192.168.0.80:8080/video?dummy=param.mjpg
Yolo v3 - 保存结果视频: darknet.exe detector demo cfg/coco.data cfg/yolov3.cfg yolov3.weights test.mp4 -out_filename res.avi
Yolo v3 Tiny COCO - 视频: darknet.exe detector demo cfg/coco.data cfg/yolov3-tiny.cfg yolov3-tiny.weights test.mp4
JSON和MJPEG服务器,允许从您的软件或Web浏览器IP地址:8070和8090进行多个连接: ./darknet detector demo ./cfg/coco.data ./cfg/yolov3.cfg ./yolov3.weights test50.mp4 -json_port 8070 -mjpeg_port 8090 -ext_output
Yolo v3 Tiny 在GPU1上运行:darknet.exe detector demo cfg/coco.data cfg/yolov3-tiny.cfg yolov3-tiny.weights -i 1 test.mp4
在 Amazon EC2 服务器上训练,使用Chrome或Firefox浏览器,通过像这样(http://ec2-35-160-228-91.us-west-2.compute.amazonaws.com:8090)的链接查看 mAP 和 Loss 曲线图(注:Darknet应该与OpenCV一起编译): ./darknet detector train cfg/coco.data yolov3.cfg darknet53.conv.74 -dont_show -mjpeg_port 8090 -map
186 MB Yolo9000 - 图像: darknet.exe detector test cfg/combine9k.data cfg/yolo9000.cfg yolo9000.weights
处理 data/train.txt中记载路径的图片,然后保存检测结果到 result.json文件中:darknet.exe detector test cfg/coco.data cfg/yolov3.cfg yolov3.weights -ext_output -dont_show -out result.json < data/train.txt
处理 data/train.txt中记载路径的图片,然后保存检测结果到 result.txt中:
darknet.exe detector test cfg/coco.data cfg/yolov3.cfg yolov3.weights -dont_show -ext_output < data/train.txt > result.txt
伪标记 - 识别文本文件 data/new_train.txt中记载路径的图片,然后以YOLO训练数据的格式保存识别结果.txt(这样子可以增大训练数据量): darknet.exe detector test cfg/coco.data cfg/yolov3.cfg yolov3.weights -thresh 0.25 -dont_show -save_labels < data/new_train.txt
计算 anchors:darknet.exe detector calc_anchors data/obj.data -num_of_clusters 9 -width 416 -height 416
计算 IoU=50下的 mAP值: darknet.exe detector map data/obj.data yolo-obj.cfg backup\yolo-obj_7000.weights
计算 IoU=75下的 mAP值: darknet.exe detector map data/obj.data yolo-obj.cfg backup\yolo-obj_7000.weights -iou_thresh 0.75
炼丹技巧
早停
粗略来讲,对于每个类别2000次迭代,总迭代次数不低于4000次。
具体来说:
多次迭代仍不能降低平均损失值(avg loss)时(avg loss可能最终收敛于0.05 ~ 3.0之间的值)
早停后,你应该从多个权重文件中选取表现最好的,这样或许可以避免过拟合。使用类似如下的指令来验证训练的好坏:1darknet.exe detector map data/obj.data yolo-obj.cfg backup\yolo-obj_7000.weights
然后选取mAP最大的或IoU最大的作为最终权重。
提高精度策略在.cfg文件中设置random=1,它会通过对不同分辨率的图片进行训练以提高精度
使用高分辨率的图像输入。在.cfg文件中设置height和width值。但是你无需重头训练,只需使用回416x416分辨率的权重数据就好了。
检查数据集标注是否正确符合规范
检查训练数据集数据量是否过少
迭代次数推荐不低于2000 * classes
你的训练样本希望包含没有目标物体的图像,即该图像中没有出现目标物体,标签文件是空的文本。
如果图片里有很多数量的目标物体,那么在.cfg文件中最后的[yolo]层或[region]层中添加参数max=200,这也可以设定成更高的值。
如果目标物体很小(缩放成416x416尺寸后小于16x16),那么将第720行设置为layers = -1, 11,将第717行设置为stride=4
如果你的模型需要区分左右手性,例如区分左手和右手、左转和右转,那么需要关闭翻转数据增强选项,即添加flip=0到这里
如果想要模型具有尺度的鲁棒性,则必须训练样本中包含多尺度的照片。这是因为YOLO不具有尺度变化的适应性。
要想加速模型的训练(但会降低预测精度)应该使用Fine-Tuning而不是Transfer-Learning,需要在这里设置参数stopbackward=1,然后运行./darknet partial cfg/yolov3.cfg yolov3.weights yolov3.conv.81 81,这会创建文件yolov3.conv.81,然后使用该文件yolov3.conv.81训练。
复杂物体应该使用复杂的神经网络来训练
你可以修改anchors的大小。略。
如何计算mAP
其他
Open Images数据集1
2
3wget https://pjreddie.com/media/files/yolov3-openimages.weights
./darknet detector test cfg/openimages.data cfg/yolov3-openimages.cfg yolov3-openimages.weights
Yolo9000
能够检测多达9000个物体,需要4G显存
Using Yolo9000
如何以库的形式调用YOLO
链接