fortran用adi方法解二维热方程_计算流体力学 | 控制方程

623f2cad0eea8109b293b330be1d2f8e.png

内容结构指引

计算流体力学概述 | 流体力学的一些基本概念 | 流体力学的控制方程

粘性流动的控制方程(纳维-斯托克斯方程) | 无粘流的控制方程(欧拉方程)

适合CFD的控制方程 | NS方程的无量纲化 | 简化NS方程

主要名词检索

计算流体力学(CFD) | 离散化 | 连续介质假设 | 流动微团 | 控制体 | 流动模型 | 物质导数

当地导数 | 迁移导数 | 速度散度 | 拉格朗日描述 | 欧拉描述 | 控制方程 | 连续性方程 | 动量方程

能量方程 | 守恒型 | 非守恒型 | 纳维-斯托克斯方程 | 欧拉方程 | 守恒型方程的向量形式

通向量 | 源项 | 解向量 | 无量纲量 | 特征量 | 无量纲化 | 定常流方程 | 不可压流方程

边界层方程 | 小扰动方程


计算流体力学概述

a. 定义

计算流体力学(CFD)是 通过数值方法求解流体力学控制方程,得到流场的离散定量描述,并以此预测流体运动规律的学科。

实际问题的流动控制方程复杂,解析解难以获得,我们通常采用数值方法求解,值得一提的是,在计算机产生之前,数值方法已然产生。

离散化分为流场的离散化(网格生成)方程的离散化(计算格式)

e01be744e1e1c79d06f3fe2e02ce7801.png
流体力学研究的三种方法

3c873dc26093f9dd6bebfd5810268f86.png
CFD与试验相比各有千秋,CFD不能完全替代真实试验

b. CFD常用方法

dd6ecddd6dc1b933a08c7f352e44dd64.png
CFD常用方法

c. CFD流程

问题定义(确定模拟目的、确定计算域)

前处理和求解(创建几何实体、设计划分网格、设置物理问题、定义求解器、求解监控)

后处理过程(查看计算结果、修订模型)

7828f91c7da793e1777cca9c2f69faf4.png
CFD实现流程

流体力学的一些基本概念

1)连续介质假设:流体连续地充满整个空间

2)流体微团:微观充分大,宏观充分小的流体“质点”

控制体:在流动区域内划出一块有限的封闭区域

3)密度

其中

是平均密度(控制体内流动的总质量/控制体体积)

7774e725222a0cfafc7dc6cc6f723b74.png
在引入流体微团概念后,我们可以轻而易举地定义流体密度

4)流动模型

为了将物理规律(方程)更方便地应用到流体上,我们定义以下四种流动模型

84d65c37c3589fbb7b205bbaf8e93311.png
四种流动模型

5)物质导数

物质导数是流体力学专有概念,在物理上是指跟踪一个运动的流体微团的时间变化率,在数学上可理解为物理量的全导数,定义式如下

即物质导数为当地导数

迁移导数
之和

6)速度散度

利用运动的控制体模型,经过简单推导可得

其中

为收缩到无穷小的控制体的体积

根据这个式子,我们可以归纳出速度散度的物理意义实际上是 每单位体积运动的流体微团,体积相对变化的时间变化率

7)流动的描述方法及其对应CFD处理方法

欧拉描述:给出每个时刻每个空间点上的物理量(计算网格不动,求解NS方程

拉格朗日描述:跟踪每个流体质点,记录物理量随时间的变化(计算网格跟踪流体质点

另外CFD中还有计算网格运动,但不完全跟踪流体质点的方法,如ALE(动网格)


流体力学的控制方程

无论是多么复杂的流动情况,其流动都由三个基本的物理原理控制,即质量守恒定律、牛顿第二定律、能量守恒定律。这三个基本的物理原理分别对应三个控制方程,即流体力学的控制方程(连续性方程、动量方程、能量方程),这三个方程即是相应物理原理的数学描述。

对应于不同的流动模型,这些方程又有不尽相同的形式。值得一提的是,对于流体力学本身,这些不同形式的控制方程是没有本质上区别,但是对于CFD而言,方程的形式将直接决定求解的结果,不适宜的方程也许我们将得不到收敛的解。

流体力学的控制方程在数学上大多是由非线性偏微分方程藕合而成的方程组,到目前为止,我们还没有找到它们封闭的通解(也许是仅仅还没有找到而已)。

1be7c7738bb3d123df5a83a2a48c2e60.png
守恒与非守恒形式方程的定义与区别将在后面讲述

下面我们将对于三个物理原理及其对应的三个控制方程分别讨论:

a. 质量守恒定律---连续性方程

对于不同的流动模型,连续性方程的形式如下

10038a1c16d9c8deea061a72290860a4.png

(控制体的)有限体积是方程具有积分形式的原因,而空间位置的固定是方程称之为守恒型的原因

b. 牛顿第二定律---动量方程

由连续性方程的推导可以看出,不同形式的方程之间可以相互转化(运用斯托克斯公式可以推导),为篇幅原因,我们可以省去一些不必要的重复,下面仅给出一种流动模型的相关方程

对于随流体运动的微团

c. 能量守恒定律---能量方程

对于随流体运动的微团


粘性流动的控制方程(纳维-斯托克斯方程)

从历史的角度来讲,NS方程(纳维斯托克斯方程)仅指粘性流动的动量方程,但是当代的文献把NS方程的范围扩大,将粘性流动的控制方程统称为NS方程(欧拉方程也有相似的历史)。

一般情况下,非定常三维可压缩粘性流动的控制方程如下

1)连续性方程

a. 非守恒形式

b. 守恒形式

2)动量方程

a. 非守恒形式

b. 守恒形式

3)能量方程

a. 非守恒形式

b. 守恒形式


无粘流的控制方程(欧拉方程)

1)连续性方程

a. 非守恒形式

b. 守恒形式

2)动量方程

a. 非守恒形式

b. 守恒形式

3)能量方程

a. 非守恒形式

b. 守恒形式


适合CFD的控制方程

从历史发展的角度,理论流体力学并没有在意守恒型与非守恒型方程的区别;

将控制方程区分为守恒形式和非守恒形式,来源于计算流体力学;对于算法设计和编程计算,选择守恒性的方程可以减轻不少工作量。

守恒形式的连续方程、动量方程和能量方程能用一个通用形式来表达,这样有助于计算程序的简化和程序结构的组织。

我们可以把守恒形式的三个控制方程写成向量形式,即寻求简洁的表达形式:

如果将每一个参量看作列向量,我们可以得到

其中列向量

,
,
称为
通向量(通量向量);

列向量

代表
源项(即当体积力和体积热流可忽略是为零);

列项量

代表
解向量

N-S方程的无量纲化

无量纲量:物理量与特征量之比

特征量:对于某物理量,人为设定的值(可任意),可如下引入特征量

将NS方程相关参数用无量纲量替换即可得到无量纲化的NS方程

其中出现的无量纲参数有


简化NS方程

a)空间上的简化

一维无粘流动(非守恒形式)

一维无粘流动(守恒形式)

二维流动(

b)时间上的简化(定常流)

c)忽略粘性(欧拉方程)

忽略NS方程右端项即可

d)忽略压缩性(不可压流)

,
,
为常数,能量方程单独考虑

二维不可压流(守恒形式)

二维不可压流(非守恒形式)

e)边界层方程

f)小扰动方程

/Chengdu 2020.5.26 4:18/

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值