二维热传导温度场有限元求解

本文是作者在热传导结构优化开发时,关于二维热传导温度场有限元求解模块的理论学习总结。基于四边形单元分割理论,给出规则矩形单元刚度矩阵求算结果,详细整理相关理论和公式,用于指导求解程序开发,还介绍了有限元基本原理、单元分析及总体合成求解方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        有限单元法作为偏微分方程数值求解的有效方法,在热仿真分析领域得到了广泛应用。本文是作者在进行热传导结构优化开发时关于二维热传导温度场有限元求解模块的相关理论学习总结[1],主要是基于四边形单元分割的相关理论,并给出了规则矩形单元刚度矩阵求算结果,对相关理论和计算公式进行了详细整理,用于指导二维热传导温度场求解程序开发。

  • 有限元基本原理

  • 二维平面温度场有限元求解基本方程

        考虑二维平面有源稳态导热问题,控制方程为二维热传导微分方程:

\small D\left[ {T\left( {x,y,t} \right)} \right] = \kappa \left( {\frac{​{​{\partial ^2}T}}{​{\partial {x^2}}} + \frac{​{​{\partial ^2}T}}{​{\partial {y^2}}}} \right) + {q_v} - \rho {c_p}\frac{​{\partial T}}{​{\partial t}} = 0

        取温度场试函数(温度场的近似解):

\small \widetilde T\left( {x,y,t} \right) = \widetilde T\left( {x,y,t,{T_1},{T_1},...,{T_n}} \right)

        式中:\small {T_1},{T_1},...,{T_n}是个离散温度点上的温度分布。根据加权余量法,温度场的近似解与精确解足够接近的判定条件是其在平面温度场计算域内的加权余量积分为零:

\small \iint_{\Omega}{W_l}\left[ {\kappa \left( {\frac{​{​{\partial ^2}T}}{​{\partial {x^2}}} + \frac{​{​{\partial ^2}T}}{​{\partial {y^2}}}} \right)} \right.\left. { + {q_v} - \rho {c_p}\frac{​{\partial T}}{​{\partial t}}} \right]dxdy=0 \quad (l = 1,2, \cdots ,n)

        代入相应的边界条件,使用格林公式变换得到平面温度场有限元计算的基本方程

\small \iint_{D}{W_l}\left[ {\kappa \left( {\frac{​{\partial {W_l}}}{​{\partial x}}\frac{​{\partial T}}{​{\partial x}} + \frac{​{\partial {W_l}}}{​{\partial y}}\frac{​{\partial T}}{​{\partial y}}} \right) - {q_v}{W_l} + {\rho _p}{W_l}\frac{​{\partial T}}{​{\partial t}}} \right]dxdy - \oint_\Gamma {\kappa {W_l}\frac{​{\partial T}}{​{\partial n}}ds} = 0

        三种不同边界条件下线积分项分别有如下表达式:

        (1)第一类边界条件:

\small \oint_\Gamma {\kappa {W_l}\frac{​{\partial T}}{​{\partial n}}ds} = 0

        (2)第二类边界条件:

\small \oint_\Gamma {\kappa {W_l}\frac{​{\partial T}}{​{\partial n}}ds} = \oint_\Gamma {q{W_l}ds}

        (3)第三类边界条件:

\small \oint_\Gamma {\kappa {W_l}\frac{​{\partial T}}{​{\partial n}}ds} = \oint_\Gamma {h{W_l}\left( {T - {T_f}} \right)ds}

  • 四边形单元分析

        将计算区域划分成任意形状大小的自由四边形单元,使用坐标变换将其投影到边长为2的正方形单元:

        对应的坐标变换公式(使用型函数表示)

\small {\begin{array}{*{20}{c}} {x = }&{​{H_i}{x_i} + {H_j}{x_j} + {H_k}{x_k} + {H_m}{x_m}}\\ {y = }&{​{H_i}{y_i} + {H_j}{y_j} + {H_k}{y_k} + {H_m}{y_m}} \end{array}}

        型函数计算公式:

\small \left. {\begin{array}{*{20}{l}} {​{H_i} = (1 - \xi )(1 - \eta )/4}\\ {​{H_j} = (1 + \xi )(1 - \eta )/4}\\ {​{H_k} = (1 + \xi )(1 + \eta )/4}\\ {​{H_m} = (1 - \xi )(1 + \eta )/4} \end{array}} \right\}

        在单元内部,温度分布也可以类似地用型函数表示:

\small T = {H_i}{T_i} + {H_j}{T_j} + {H_k}{T_k} + {H_m}{T_m}

        在单元内部进行变分计算:

\small \iint_{e}\left[ {\kappa \left( {\frac{​{\partial {W_l}}}{​{\partial x}}\frac{​{\partial T}}{​{\partial x}} + \frac{​{\partial {W_l}}}{​{\partial y}}\frac{​{\partial T}}{​{\partial y}}} \right) - {q_v}{W_l} + {\rho _p}{W_l}\frac{​{\partial T}}{​{\partial t}}} \right]dxdy - \int_{​{\Gamma _e}} {\kappa {W_l}\frac{​{\partial T}}{​{\partial n}}ds} \, \, \,(l = i,j,k,m)

        根据Galerkin法计算权重系数:

\small {W_l} = \frac{​{\partial T}}{​{\partial {T_l}}} = {H_l}

        根据链式求导法则,计算温度函数对坐标的偏导:

\small \left[ {\begin{array}{*{20}{l}} {\partial T/\partial x}\\ {\partial T/\partial y} \end{array}} \right] = {[J]^{ - 1}}\left[ {\begin{array}{*{20}{l}} {\partial T/\partial \xi }\\ {\partial T/\partial \eta } \end{array}} \right]

        [J]是坐标变换的雅可比矩阵:

\small [J] = \left[ {\begin{array}{*{20}{l}} {\partial x/\partial \xi }&{\partial y/\partial \xi }\\ {\partial x/\partial \eta }&{\partial y/\partial \eta } \end{array}} \right] = \frac{1}{4}\left[ {\begin{array}{*{20}{l}} {​{a_1} + A\eta }&{​{a_2} + B\eta }\\ {​{a_3} + A\xi }&{​{a_4} + B\xi } \end{array}} \right]

        式中:

\small \left\{ {\begin{array}{*{20}{l}} {​{a_1} = - {x_i} + {x_j} + {x_k} - {x_m}}\\ {​{a_2} = - {y_i} + {y_j} + {y_k} - {y_m}}\\ {​{a_3} = - {x_i} - {x_j} + {x_k} + {x_m}}\\ {​{a_4} = - {y_i} - {y_j} + {y_k} + {y_m}}\\ {A = {x_i} - {x_j} + {x_k} - {x_m}}\\ {B = {y_i} - {y_j} + {y_k} - {y_m}} \end{array}} \right.

        代入单元变分公式,对四边形单元的四个节点,共有四个变分表达式,得到四个变分式的矩阵向量乘积形式:

\small \left[ {\begin{array}{*{20}{c}} {​{P_i}}\\ {​{P_j}}\\ {​{P_k}}\\ {​{P_m}} \end{array}} \right]=\left[ {\begin{array}{*{20}{l}} {​{k_{ii}}}&{​{k_{ij}}}&{​{k_{ik}}}&{​{k_{im}}}\\ {​{k_{ji}}}&{​{k_{jj}}}&{​{k_{jk}}}&{​{k_{jm}}}\\ {​{k_{ki}}}&{​{k_{kj}}}&{​{k_{kk}}}&{​{k_{km}}}\\ {​{k_{mi}}}&{​{k_{mj}}}&{​{k_{mk}}}&{​{k_{mi}}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {​{T_i}}\\ {​{T_j}}\\ {​{T_k}}\\ {​{T_m}} \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} {​{n_{ii}}}&{​{n_{ij}}}&{​{n_{ik}}}&{​{n_{im}}}\\ {​{n_{ji}}}&{​{n_{jj}}}&{​{n_{jk}}}&{​{n_{jm}}}\\ {​{n_{ki}}}&{​{n_{kj}}}&{​{n_{kk}}}&{​{n_{km}}}\\ {​{n_{mi}}}&{​{n_{mj}}}&{​{n_{mk}}}&{​{n_{mm}}} \end{array}} \right]\left[ {\begin{array}{*{20}{l}} {\partial {T_i}/\partial t}\\ {\partial {T_j}/\partial t}\\ {\partial {T_k}/\partial t}\\ {\partial {T_m}/\partial t} \end{array}} \right]

        即:

\small {[K]^e}{\{ T\} ^e} + {[N]^e}{\left\{ {\frac{​{\partial T}}{​{\partial t}}} \right\}^e} = {\{ P\} ^e}

        这是我们所熟悉的刚度阵乘积形式。单元刚度矩阵的任意元素由单元变分表达式的积分计算得到。载荷项可结合相应的边界条件由线积分项计算得到。

  • 总体合成求解

        与上一节类似地,令温度场全场加权余量积分为零,得到总体系统的矩阵表达式:

\small [K]{\{ T\} _t} + [N]{\{ \partial T/\partial t\} _t} = {\{ P\} _t}

        总体矩阵由单元矩阵合成,合成规律如下:

        (1)矩阵[K]和[N]合成规律相同;

        (2)总体刚度矩阵的非主对角元素等于所有包含该节点的单元对应的非主对角元素之和。不在同一单元的节点不会对彼此对应的非对角元素产生影响,即若节点\small l,n不在同一单元内,则总体矩阵中\small {k_{ln}} = {k_{nl}} = 0

        (3)总体刚度矩阵的主对角元素或载荷向量的元素等于包含该节点的所有单元对应的主对角元素或载荷项之和组成.

        在有限元计算时,对离散后的各单元刚度矩阵和载荷向量进行合成,得到总体刚度矩阵与载荷向量,即可求解离散温度场。关于有限元求解的更多内容,可参考文末列出的参考文献~

  • 参考文献

  • [1]孔祥谦, 王传溥. 有限单元法在传热学中的应用[M]. 科学出版社, 1981.

### 二维热传导方程有限元方法求解实例教程 #### 背景介绍 对于复杂的物理现象模拟,如热量传递中的二维热传导问题,采用有限元方法(FEM)可以提供一种有效的数值解决方案。这种方法通过将连续体离散化成多个单元来逼近真实情况下的温度分布。 #### 控制方程 考虑稳态条件下的二维热传导方程,在笛卡尔坐标系下可表示为: \[ -k\nabla^{2}T = Q \] 其中 \( k \) 是材料的导热系数;\( T=T(x,y) \) 表示位置处的温度场;而源项 \( Q=Q(x,y) \),代表单位体积内的内热源强度[^1]。 为了简化计算过程以及处理边界条件等问题,通常会引入加权残数法得到变分原理或弱形式表述。具体来说就是对上述强形式做积分操作,并乘上合适的权重函数后再进行部分积分转换,从而降低微分阶次至易于求解的一阶水平[^2]。 #### 单元选取与基底构建 针对矩形区域划分网格时可以选择四边形单元作为基本构成模块之一。假设每个节点上的未知量即为该点对应的温度值,则整个区域内任意一点P处的温度可以通过插值得到如下线性组合关系: \[ T(P)=\sum_{i}\alpha _{i}(x,y)\cdot t_{i}, \quad P=(x,y),t_{i}=T(\text {node } i) \] 这里 \(\alpha_i\) 称作形状函数(shape function),它不仅决定了局部范围内各节点贡献度大小还影响着整体精度高低。一般情况下会选择双线性的多项式表达方式以确保足够的光滑性和准确性。 #### 组装全局刚度矩阵 当完成了所有子域内部及其交界面间的相互作用描述之后便能够建立起完整的代数系统——亦称为总体平衡方程式组。此过程中涉及到的关键步骤便是组装所谓的“总刚阵”,也就是把各个独立的小块拼接起来形成一个大型稀疏结构化的正定实对称矩阵K,同时还要同步更新右侧向量F用来记录外部施加载荷的影响效果。 ```matlab % 初始化参数设置 nx = ny = 50; % 定义空间分辨率 dx = dy = L/(nx-1); % 计算步长(L为长度尺度) % 创建空数组用于存储最终结果 global_Ke=zeros(nx*ny,nx*ny); global_Fe=zeros(nx*ny,1); for ix=1:nx-1 for iy=1:ny-1 % 获取当前单元角点索引编号 node=[ix+(iy-1)*nx,... ix+iy*nx,... (ix+1)+(iy-1)*nx,... (ix+1)+iy*nx]; % 构造局部刚度矩阵 Ke 和载荷列向量 Fe ... % 将局部贡献累加入全局体系之中 global_Ke(node,node)=global_Ke(node,node)+local_Ke; global_Fe(node,:)=global_Fe(node,:)+local_Fe; end end ``` #### 施加边界约束并求解线性方程组 最后一步则是根据实际工程应用场景给定特定类型的边界条件(比如固定壁面温度假设),并通过修改相应的自由度来反映这些限制因素的存在。随后利用MATLAB内置命令`mldivide()`快速高效地完成大规模稀疏系统的迭代运算获取所需解答。 ```matlab % 应用Dirichlet型边界条件 fixed_nodes=find(...); % 找出受控结点列表 global_Ke(fixed_nodes,:)=[]; global_Ke(:,fixed_nodes)=[]; global_Fe(fixed_nodes)=[]; % 解决剩余未固定的自由度 solution=mldivide(global_Ke,global_Fe); ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值