有限单元法作为偏微分方程数值求解的有效方法,在热仿真分析领域得到了广泛应用。本文是作者在进行热传导结构优化开发时关于二维热传导温度场有限元求解模块的相关理论学习总结[1],主要是基于四边形单元分割的相关理论,并给出了规则矩形单元刚度矩阵求算结果,对相关理论和计算公式进行了详细整理,用于指导二维热传导温度场求解程序开发。
-
有限元基本原理
-
二维平面温度场有限元求解基本方程
考虑二维平面有源稳态导热问题,控制方程为二维热传导微分方程:
取温度场试函数(温度场的近似解):
式中:是个离散温度点上的温度分布。根据加权余量法,温度场的近似解与精确解足够接近的判定条件是其在平面温度场计算域内的加权余量积分为零:
代入相应的边界条件,使用格林公式变换得到平面温度场有限元计算的基本方程:
三种不同边界条件下线积分项分别有如下表达式:
(1)第一类边界条件:
(2)第二类边界条件:
(3)第三类边界条件:
-
四边形单元分析
将计算区域划分成任意形状大小的自由四边形单元,使用坐标变换将其投影到边长为2的正方形单元:
对应的坐标变换公式(使用型函数表示)
型函数计算公式:
在单元内部,温度分布也可以类似地用型函数表示:
在单元内部进行变分计算:
根据Galerkin法计算权重系数:
根据链式求导法则,计算温度函数对坐标的偏导:
[J]是坐标变换的雅可比矩阵:
式中:
代入单元变分公式,对四边形单元的四个节点,共有四个变分表达式,得到四个变分式的矩阵向量乘积形式:
即:
这是我们所熟悉的刚度阵乘积形式。单元刚度矩阵的任意元素由单元变分表达式的积分计算得到。载荷项可结合相应的边界条件由线积分项计算得到。
-
总体合成求解
与上一节类似地,令温度场全场加权余量积分为零,得到总体系统的矩阵表达式:
总体矩阵由单元矩阵合成,合成规律如下:
(1)矩阵[K]和[N]合成规律相同;
(2)总体刚度矩阵的非主对角元素等于所有包含该节点的单元对应的非主对角元素之和。不在同一单元的节点不会对彼此对应的非对角元素产生影响,即若节点不在同一单元内,则总体矩阵中
;
(3)总体刚度矩阵的主对角元素或载荷向量的元素等于包含该节点的所有单元对应的主对角元素或载荷项之和组成.
在有限元计算时,对离散后的各单元刚度矩阵和载荷向量进行合成,得到总体刚度矩阵与载荷向量,即可求解离散温度场。关于有限元求解的更多内容,可参考文末列出的参考文献~
-
参考文献
- [1]孔祥谦, 王传溥. 有限单元法在传热学中的应用[M]. 科学出版社, 1981.