逻辑回归python sigmoid(z)_逻辑回归( Logistic Regression)的Python源码的实现

1. 前言

本文主要讲解逻辑回归的代码的实现,逻辑回归的原理讲解大家可以去coursera上面看吴恩达的机器学习课程的第三周的课程,里面讲解的比较详细,适合入门的学者。b站上面也有该课程的视频,逻辑回归的内容在视频33-视频39

以下为该课程网上的相关笔记:

2. 源码讲解

下面开始源码的讲解

2.1 __init__()

def __init__(self, learning_rate=.1, n_iterations=4000):

self.learning_rate = learning_rate

self.n_iterations = n_iterations

初始化函数,初始化学习率、迭代的次数。

2.2 initialize_weights()

def initialize_weights(self, n_features):

# 初始化参数

# 参数范围[-1/sqrt(N), 1/sqrt(N)]

limit = np.sqrt(1 / n_features)

w = np.random.uniform(-limit, limit, (n_features, 1))

b = 0

self.w = np.insert(w, 0, b, axis=0)

初始化参数,参数矩阵w里的大小范围在(-limit,limit)之间,矩阵大小为(n_features,1)。w加入b的值相当于把偏置值加进去

2.3 sigmoid()

def sigmoid(x):

return 1 / (1 + np.exp(-x))

sigmoid函数

2.4 fit()

def fit(self, X, y):

m_samples, n_features = X.shape

self.initialize_weights(n_features)

# 为X增加一列特征x1,x1 = 0

X = np.insert(X, 0, 1, axis=1)

y = np.reshape(y, (m_samples, 1))

# 梯度训练n_iterations轮

for i in range(self.n_iterations):

h_x = X.dot(self.w)

y_pred = sigmoid(h_x)

w_grad = X.T.dot(y_pred - y)

self.w = self.w - self.learning_rate * w_grad

逻辑回归的主要核心函数吗,X加多一列全1的值,这样wx相当于wx + b。然后根据迭代的次数,利用梯度下降法循环优化w,w_grad是梯度。

2.5 predict():

def predict(self, X):

X = np.insert(X, 0, 1, axis=1)

h_x = X.dot(self.w)

y_pred = np.round(sigmoid(h_x))

return y_pred.astype(int)

预测函数,利用优化求得的w预测数据的分类。

3. 源码地址

直接运行logistic_regression.py即可

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值