1. 前言
本文主要讲解逻辑回归的代码的实现,逻辑回归的原理讲解大家可以去coursera上面看吴恩达的机器学习课程的第三周的课程,里面讲解的比较详细,适合入门的学者。b站上面也有该课程的视频,逻辑回归的内容在视频33-视频39
以下为该课程网上的相关笔记:
2. 源码讲解
下面开始源码的讲解
2.1 __init__()
def __init__(self, learning_rate=.1, n_iterations=4000):
self.learning_rate = learning_rate
self.n_iterations = n_iterations
初始化函数,初始化学习率、迭代的次数。
2.2 initialize_weights()
def initialize_weights(self, n_features):
# 初始化参数
# 参数范围[-1/sqrt(N), 1/sqrt(N)]
limit = np.sqrt(1 / n_features)
w = np.random.uniform(-limit, limit, (n_features, 1))
b = 0
self.w = np.insert(w, 0, b, axis=0)
初始化参数,参数矩阵w里的大小范围在(-limit,limit)之间,矩阵大小为(n_features,1)。w加入b的值相当于把偏置值加进去
2.3 sigmoid()
def sigmoid(x):
return 1 / (1 + np.exp(-x))
sigmoid函数
2.4 fit()
def fit(self, X, y):
m_samples, n_features = X.shape
self.initialize_weights(n_features)
# 为X增加一列特征x1,x1 = 0
X = np.insert(X, 0, 1, axis=1)
y = np.reshape(y, (m_samples, 1))
# 梯度训练n_iterations轮
for i in range(self.n_iterations):
h_x = X.dot(self.w)
y_pred = sigmoid(h_x)
w_grad = X.T.dot(y_pred - y)
self.w = self.w - self.learning_rate * w_grad
逻辑回归的主要核心函数吗,X加多一列全1的值,这样wx相当于wx + b。然后根据迭代的次数,利用梯度下降法循环优化w,w_grad是梯度。
2.5 predict():
def predict(self, X):
X = np.insert(X, 0, 1, axis=1)
h_x = X.dot(self.w)
y_pred = np.round(sigmoid(h_x))
return y_pred.astype(int)
预测函数,利用优化求得的w预测数据的分类。
3. 源码地址
直接运行logistic_regression.py即可