弥散阴影html,超赞!一份简单易上手的青春弥散阴影修炼手册

@笔戈科技 :一份简单易上手的青春弥散阴影修炼手册!九张长图/3种方法/3种效果/4个技巧,包你学会设计时下流行的骚气通透的弥散阴影效果。

c529d051f72de6191849ef580e6cd83b.png

1ca6fbfdfbe8993bfa03daeb0d0c40be.png

690d53e9c6293fd11200512ddf1181ea.png

投影法较为简单粗暴,但是投影效果较为粗糙缺乏立体感,投影颜色较难调节且单一。

92b8387ad655fa69cc102793c323ebef.png

较为折中的方法,仅仅适用于形状图层和单一颜色投影,且操作复杂程度不亚于接下来的高斯模糊。

d0eb2376d2a987d38dacbb20d21f0317.png

高斯模糊能较好地应对大多数需要和场景,并能对投影进行各种细调。使用高斯模糊前记得把图层转换成智能对象。

7bc65c22c5ee21aa120b811c7810e12a.png

下面我们通过具体的操作实例来为大家展示这些不同的效果是如何设计出来的。

首先,我们用形状工具建立三个矩形。填充上颜色。

f3b276108dbd36816d001ffb0168cb7e.png

复制图层,进行不同的变换。为了方便大家看出区别,我们将复制出来的图层添加了颜色叠加。

03c033ef1366b7342dbe95ecccc9254a.png

矩形一宽度缩小,高度不变,向下位移一段距离。

矩形二宽度不变,高度不变,向下位移一段距离。

矩形三高度宽度都缩小,不位移。

进行高斯模糊。

62df87c17bd7c87c2e1bbe24b0a532c0.png

通过不同的变换,可以设计出不同效果的弥散阴影。较为常用为矩形一所示的变换。

894ac887aa0ac7f3cb220a9dad3395e2.png

bd2c7664bb40de3b8d7a1a850616d5f1.png

c88c42dc945d5cb169f709a4035493c5.png

「腾讯人气过万的好文合集」

2684d62be0f72b3e4e4e6e0a75df4da9.png

【优设网 原创文章 投稿邮箱:2650232288@qq.com】

================关于优设网================

“优设网uisdc.com“是国内人气最高的网页设计师学习平台,专注分享网页设计、无线端设计以及PS教程。

【特色推荐】

设计师需要读的100本书:史上最全的设计师图书导航:http://hao.uisdc.com/book/。

设计微博:拥有粉丝量130万的人气微博@优秀网页设计 ,欢迎关注获取网页设计资源、下载顶尖设计素材。

设计导航:全球顶尖设计网站推荐,设计师必备导航:http://hao.uisdc.com

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值