f分布表完整图a=0.01_【知识】二元概率分布

本文详细介绍了二元概率分布的概念,包括离散随机变量和连续随机变量的情况。通过实例解析了联合概率分布、边缘概率分布和条件概率分布的计算与性质,并提供了具体的计算公式。此外,还探讨了在实际问题中如何应用这些概率分布。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

两个随机变量的联合概率分布、边缘概率分布和条件概率分布

随机变量是定义在样本空间上的数值函数,在介绍离散随机变量和连续随机变量的时候,我们仅仅讨论样本空间上的一个随机变量。如果我们对样本空间的两种特性或变量感兴趣,那么就需要在样本空间上定义两个随机变量,这两个随机变量交集的概率分布称为二元概率分布。本文将带领你认识二元概率分布中的几个基本概念--联合概率分布、边缘概率分布和条件概率分布。

01

离散随机变量的二元概率分布

   联合概率分布

假如我们对样本空间中的每个简单事件指定两个数,一个对应于离散随机变量X,另一个对应离散随机变量Y,那么每一个简单事件将对应两个数值事件(X的取值和Y的取值)。

用字母A表示数值事件X,用字母B表示数值事件Y,则两个数值事件交集的概率可表示为:

4419094eff32f829b4a99895ff66aead.png

能够给出所有X和Y取值的每一个组合(x,y)概率的图、表、公式称作X和Y的联合概率分布(二元概率分布)。根据事件的交的运算法则,可得联合概率分布的计算公式:

9f2e87aa9c6baf59d567d545497444c9.png

其中,p1(x)和p2(y)分别是X和Y的边缘概率分布,p1(x|y)和p2(y|x)分别是X和Y的条件概率分布,详见下文。

联合概率分布具有如下性质:

5943846e1a4182eaef71711b66a885fd.png

   边缘概率分布

如果样本空间上被定义了两个随机变量X和Y,但是我们仅仅对X的观测值感兴趣,或者只对Y的观测值感兴趣,给出X所有取值的概率的图、表、公式称为X的边缘概率分布;同样地,给出Y所有取值的概率的图、表、公式称为Y的边缘概率分布

为了方便起见,当提及X的概率分布时,使用下标1,提及Y的概率分布时,使用下标2。假设p(x,y)是X和Y的联合概率分布,则X和Y的边缘概率分布的计算公式如下所示:

98ece3843ad901c760fbcbbb79db853a.png

边缘概率分布具有如下性质(以X的边缘概率分布为例):

99c4aa660103f66269d08f044618a7ba.png

   条件概率分布

在给定Y=y的条件下,发生数值事件X=x的概率是事件Y=y下X=x发生的条件概率。能够给出所有Y取值下所有X取值的条件概率的图、表、公式称为给定Y时X的条件概率分布

假设p(x,y)是X和Y的联合概率分布,p1(x)和p2(y)分别是X和Y的边缘概率分布,则条件概率分布的计算公式如下所示:

35ea5dfeb9db5cc370ffecc7d03080d2.png

条件概率分布具有如下性质(以给定Y时X的条件概率分布为例):

554f124865384e4a29bf655d77c85f9c.png

02

连续随机变量的二元概率分布

   联合概率密度函数

离散随机变量的二元概率分布中的定义也适用于连续随机变量,不同之处在于离散随机变量的概率是求和,而连续随机变量的概率是求积分。

与离散随机变量的联合概率分布类似,连续随机变量X和Y的联合概率密度函数f(x,y)的计算公式如下所示:

2decde02767552ce14357b550260ccb5.png

其中,f1(x)和f2(y)分别是X和Y的边缘概率密度函数,f1(x|y)和f2(y|x)分别是X和Y的条件概率密度函数,详见下文。

联合概率密度函数具有如下性质:

2bc8e84e72c8c3af277236e2b53f2826.png

   边缘概率密度函数

假设f(x,y)是连续随机变量X和Y的联合概率密度函数,则X和Y的边缘概率密度函数分别为:

3195d9979ac8ead73e1dd46fe20bcd57.png

边缘概率密度函数具有如下性质(以X的边缘概率密度函数为例):

aaea7c5bd994e7e94655638ac91375e6.png

   条件概率密度函数

假设f(x,y)是连续随机变量X和Y的联合概率密度函数,则X和Y的条件概率密度函数分别为:

6d1fc2e18941710f02f10a27c399841f.png

同样,条件概率密度函数具有如下性质(以给定Y时X的条件概率密度函数为例):

021c7783b92833a60e965d5a4a39e606.png

03

应用举例

   离散随机变量的二元概率分布

如下图所示,从总体中随机抽取2个球,令X表示抽出1号球的个数,令Y表示抽出蓝球的个数,求X和Y的联合概率分布、边缘概率分布和条件概率分布。

7eaef783f1a40897d678080f3b125a8e.png

解:

1)联合概率分布

1号球个数X的可能取值为0、1、2,蓝球个数Y的可能取值也是0、1、2,因此一共有9种组合的(x,y)。从5个球中抽取出2个球的可能方法有5!/(2!*3!)=10种,根据简单事件的计数法则,易得X和Y的联合概率分布:

f6b17453cc17eb526892b71b6a05508c.png

即p(0,1)=1/10,p(1,0)=1/10,p(1,1)=3/10,p(1,2)=2/10,p(2,1)=2/10,p(2,2)=1/10;

2)边缘概率分布

根据边缘概率分布的计算式,易得X和Y的边缘概率分布:

3e0d3585d44b43956b8055335b5e18c7.png

即X的边缘概率分布为p1(0)=1/10,p1(1)=6/10,p1(2)=3/10;Y的边缘概率分布为p2(0)=1/10,p2(1)=6/10,p2(2)=3/10;

3)条件概率分布

根据公式可知,条件概率分布等于联合概率分布除以边缘概率分布,例如p1(0|1)=p(0,1)/p2(1)=1/6,如下图所示:

d076c95e04bede8e288a29f9a12c4583.png

因此,给定Y时X的条件概率分布为:

p1(0|0)=0,p1(1|0)=1,p1(2|0)=0;

p1(0|1)=1/6,p1(1|1)=1/2,p1(2|1)=1/3;

p1(0|2)=0,p1(1|2)=2/3,p1(2|2)=1/3;

给定X时Y的条件概率分布为:

p2(0|0)=0,p2(1|0)=1,p2(2|0)=0;

p2(0|1)=1/6,p2(1|1)=1/2,p2(2|1)=1/3;

p2(0|2)=0,p2(1|2)=2/3,p2(2|2)=1/3;

   连续随机变量的二元概率分布

假设连续随机变量X和Y的联合概率密度函数为:

c4f656f51ec6589aa31c5369e3878d10.png

求边缘概率密度函数f1(x),以及条件概率密度函数f2(y|x)。

解:

1)边缘概率密度函数

X的边缘概率密度函数为:

39f25857bb98913c851717b3377bb057.png

2)条件概率密度函数

给定X时Y的条件概率密度函数为:

e2d79c96093e503ce3d9f017d3e230c8.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值