matlab偏微分方程数值解误差_无网格法与Matlab程序设计(9)——无网格径向基插值法:原理...

参考资料

G.R.Liu Y.T.GU著 王建明 周学军译 《无网格法理论及程序设计》

数值实现

Matlab 2019a

前情回顾

形式主义的居士:无网格法理论与Matlab程序设计(1)——概述​zhuanlan.zhihu.com
地球物理局 地震波场模拟实验室 无网格组
地球物理局 基建处 数值计算科

声明:

# 系列写作内容首先符合本人的研究需要,不会优先照顾读者体验。
# 仅供学习和参考,禁止转载。

无网格径向基插值法

RPIM公式

1.弱式问题的引出

考虑如下一定义在域

和边界
上的标准二维线弹性问题。关于二维固体力学问题的偏微分方程和边界条件具有以下形式:

其中

为微分算子矩阵

:应力向量;

:位移向量;

:体力向量;

:表面力(自然)边界上的给定表面力;

:位移(本质)边界上的给定位移;

:自然边界上某点处的单位外法线向量。

偏微分方程(1)是系统方程的强式形式。能获得强式系统方程的精确解会很理想,但对于实际工程问题很难做到。因此我们经常采用基于强式的数值方法去获得问题的近似解。譬如有限差分法(FDM)。然而FDM要求规则的网格划分,通常只能用于求解具有规则几何形状和边界条件的简单问题。在强式算式中,需假设近似未知函数具有足够的连续性,即要求它与偏微分方程具有同阶的可导性。

弱式相对于强式来说,对近似函数的连续性要求较弱,它基于一数学或物理原理,将积分运算引入系统方程。弱式形式具有多种对公式的处理方法,用于求解复杂系统的近似解。基于弱式的公式通常是一组稳定性良好的离散系统方程,用它可获得高精度的计算结果。

以弱式形式表示的场变量的近似函数对连续性的要求较强式形式有显著差别。对一个

阶的微分控制方程,强式场变量表达式要求场变量为
阶连续,而其对应的弱式通常仅要求具有
阶连续。

通常我们可以根据变分原理和加权残量法构造弱式。Galerkin弱式以及Petrov-Galerkin弱式是两种最广泛使用的建立系统方程的方法,用他们来推导无网格公式。Hamilton原理也常被用于建立近似的动力学问题的系统方程,同样也将用于无网格法。最小总势能原理作为一种便利的工具,被广泛地用于建立FEM的离散系统方程和形成其他类型的近似方法。加权残量法则是一种建立各类工程问题离散系统方程的更通用、更强有力的数学工具,它已被用于形成现有的各种无网格法,也必将用于生成新的无网格法。

2.加权残量法

我们以一个简单问题为例,说明加权残量法的基本原理。考虑如下偏微分方程

其中

为偏微分算子,其定义了一种作用于标量函数
的运算,所得结果为函数
。边界条件为:

其中

是边界条件的偏微分算子。

大多数工程问题是以常微分方程或偏微分方程表述的,仅能通过近似方法求解。首先将函数

近似表示为:

其中

是第
基函数试函数
是第
项基函数的未知系数,
是基函数的项数。
基函数的选取通常需满足某些给定条件,称为允许性条件,其通常涉及本质边界条件和连续性要求。

实际应用时,式(7)中基函数所使用的项数

通常较少,故控制方程(5)和边界条件(6)通常不能精确满足,即将式(7)代入(5)和(6)时通常会有:

因此通常可分别获得如下定义在问题域上的系统方程残量函数和定义在边界上的边界条件残量函数

如果式(7)是控制方程(5)和边界条件方程(6)的精确解,则残量

为零。但对于许多实际问题,通常无法得到精确解,所以
通常不为零。注意
随所选择的近似函数的不同而变化。我们
可采用某些技术获取适当的近似函数,以使其相应的残量尽可能小令在平均意义上的残量加权积分为零,即令

其中

,而
分别为对应
的一组已知权函数。

注意可选择由式(7)表示的近似解满足边界条件,这样

即为零,式(12)变为:

该式即为常用于建立数值算法(如FEM等)的加权残量法表达式。

注意,式(12)中的

可取相同的权函数。

将式(10)、式(11)代入式(12),得到

利用式(7)得到

式(15)可进一步对

显式展开如下:

由式(16)我们可获得

个未知量
个方程。求解这些方程可获得
及相应的近似解,使得残量
在平均意义上为零。

当满足条件:

  • 权函数
    和基函数
    线性独立;
  • 基函数
    为一定阶数的连续函数;
  • 权函数和基函数达到特定的重叠量;
  • 时,只要该问题的解是唯一并连续的

则由式(7)表示的近似解将收敛于问题的精确解。

上述为一般形式的加权残量法。应指出的是,式(16)为由原常微分方程或偏微分方程所导出的一组积分方程式。故加权残量法提供了一种将常微分方程或偏微分方程转化为积分方程的方法。积分方程有助于“抹去”由函数近似所可能引起的误差,故可改善解的稳定性和精度。积分操作也可通过分部积分以降低求导阶数,从而可降低对近似函数连续性阶数的要求。这就是“弱式”的含义——减弱了对近似函数连续性的要求。

3.RPIM公式

于是式(1)的标准变分(弱)形式可表示如下:

其中

为弹性常数矩阵,对于平面应力和平面应变分别由

给出。

注意式(17)为定义在全局问题域

上的弱式。
为计算式(17)中的积分,需将整个问题域离散成一组不相互重叠的 背景网格,如图所示。为了计算沿自然边界上的积分,需使用一组曲线(对二维问题)背景网格(不重叠)。

16431c244df9f66b4a301a762c3c8313.png
G.R.Liu Y.T.GU著 王建明 周学军译 《无网格法理论及程序设计》P.102

为了获得场变量的近似式,现将问题域用一组场节点表示,并将整个问题域中的场节点从

顺序编号。利用RPIM形函数通过局部支持域中的一组节点可形成任意计算点处的位移近似

式中

为形函数矩阵,
为局部支持域中的节点数,
为支持域中
个节点的位移向量。式(20)中的圆括号下标内的数字表示矩阵或向量的维数。(20)也可以表示为以下对节点求和的形式

式中

为节点
的形函数矩阵,
为节点位移。
为计算点的近似位移,此处的计算点可以是采样点或积分点。

由(21)可得到

和式(21),可由近似位移得到应变

式中

为应变矩阵,
为节点
的应变矩阵。类似地可得到

此时利用材料的本构方程可得到问题域中任一点处的应力向量

将式(24)和(25)代入式(17)中的第一项,得到

在此之前

均表示局部支持域中的节点局部编号。现在我们将从局部编号体系转为使用总体编号,将整个域中的所有节点从
按统一的方式编号,
为问题域上的节点总数。当节点
不为同一局部支持域中的节点时,其相应的被积函数为零。于是式(27)可表示为:

将积分号移到和式内

其中

为一个
矩阵,称为
节点刚度矩阵,定义为

注意当节点

不同时位于同一积分点的支持域中时,
为零。式(29)可表示为

该式右边的求和实际为一个组装过程。我们进行如下操作:

最终式(29)变为:

其中

总体刚度矩阵,形式为:

矩阵

的维数为
,因为节点刚度矩阵
的,而问题域中的总节点数为

式(33)中的

为整个问题域中所有节点位移所组成的总体位移向量,其形式为

向量

的长度为

将式(21)代入式(17)的第二项,与推导刚度矩阵的方法一样,可得到

与处理式(27)的方法相同,式(36)可表示为:

现将积分号移到和式内,可得到:

式中

节点体力向量,可定义为

其中

为体力向量。

式(38)中的最后求和可展开并分组而产生以下矩阵形式:

其中

总体体力向量,长度为
,由整个问题域中的所有节点的节点体力向量组装而成,可被定义为:

对式(17)最后一项的处理,与对式(36)-(41)中的第二项处理过程完全等同,只是将体力向量改为表面力向量,将域积分改为边界积分,由此得到:

其中

节点表面力向量

式(42)中的

总体表面力向量,由节点表面力向量组装而成;向量
的长度为

分别将式(33)、(40)、(42)带入式(17),得到

因为

是任意的,故上式成立的条件为

重写为

其中

为总体力向量,可表示为:

式(48)即为最终的离散方程。在求解以得到节点位移之前要施加位移边界条件。求出节点位移之后,将其分别代入式(24)、(26)可求得相应的应变和应力。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值