参考资料
G.R.Liu Y.T.GU著 王建明 周学军译 《无网格法理论及程序设计》
数值实现
Matlab 2019a
目录
石中居士:无网格法理论与Matlab程序设计——目录zhuanlan.zhihu.com地球物理局 地震波场模拟实验室 无网格组
地球物理局 基建处 数值计算科
声明:
# 系列写作内容首先符合本人的研究需要,不会优先照顾读者体验。
# 仅供学习和参考,禁止转载。
无网格法概述
- 经典有限元法的局限性
(1)形成网格时的计算成本很高,需要把大部分时间和人工力量花在生成网格上。这部分工作应由计算机自动完成。
(2)应力精度低,有限元软件包不能精确估计应力。因为有限元公式中假设位移分单元连续,所以由有限元得到的应力在单元边界通常不连续。
(3)自适应分析困难。要生成复杂的自适应网格生成器,对于三维域中的六面体网格难以实现。而且需要极高的计算成本、并对不同阶段的网格之间的场变量进行映射,这会降低求解精度。
(4)对于大变形问题、裂纹扩展问题、裂纹材料破坏过程问题处理得不好。
种种问题的根源在于单元或网格。解决问题的关键在于摆脱单元或网格的概念。
- 无网格法定义
MFree法是在建立整个问题域的系统代数方程时,不需利用预定义的网格信息进行域离散的方法。(GR Liu,2002)
无网格法利用场节点表示(而非离散)问题域和其边界。
场节点:散布的节点,不构成网格。
无网格法要求:
(1)基本要求:不需利用预定义网格对场变量进行插值或近似。
(2)理想要求:在求解一个任意集合形状的、由偏微分方程和边界条件决定的问题时,整个求解过程均不需要网格。
- 无网格法求解过程
(1)域的表示:采用自适应算法,调控场节点密度、使得初始节点分布不再重要。节点密度取决于计算精度要求以及可用计算资源,非均匀分布。
(2)函数插值/近似:以
其中,
(3)形成系统方程:应用形函数以及强式或弱式形式的系统方程,形成离散方程,通常可以表示为节点矩阵形式,并可由此组装整个问题域的总体系统方程。系统矩阵可能是非对称的。
(4)求解总体方程:步骤类似于有限元法,但可能需要利用非对称矩阵系统的求解器。