pylucene构建索引_GitHub - riokaa/SduViewWebSpider: 【信息检索课程设计】sdu新闻网站全站爬取+索引构建+搜索引擎...

该项目是信息检索课程设计,实现了sdu新闻网站的爬取、MongoDB存储、Whoosh索引构建及Django搜索网页。爬虫使用scrapy和requests,索引构建采用Whoosh和jieba分词,搜索界面由Django提供,支持断点续爬和断点续构功能。
摘要由CSDN通过智能技术生成

README

信息检索课程设计sdu视点新闻全站爬虫爬取+索引构建+搜索引擎查询练习程序(1805)。

爬虫功能使用Python的scrapy库实现,并用MongoDB数据库进行存储。

索引构建和搜索功能用Python的Whoosh和jieba库实现。(由于lucene是java库,所以pyLucene库的安装极其麻烦,因此选用Python原生库Whoosh实现,并使用jieba进行中文分词。)

搜索网页界面用django实现,页面模板套用BootCDN。

1 要求

以下是检索的基本要求:可以利用lucene、nutch等开源工具,利用Python、Java等编程语言,但需要分别演示并说明原理。

Web网页信息抽取

以山东大学新闻网为起点进行网页的循环爬取,保持爬虫在view.sdu.edu.cn之内(即只爬取这个站点的网页),爬取的网页数量越多越好。

索引构建

对上一步爬取到的网页进行结构化预处理,包括基于模板的信息抽取、分字段解析、分词、构建索引等。

检索排序

对上一步构建的索引库进行查询,对于给定的查询,给出检索结果,明白排序的原理及方法。

2 运行方式

运行sduspider/run.py来进行网络爬虫,这个过程将持续十多个小时,但可以随时终止,在下次运行时继续。

运行indexbuilder/index_builder.py来对数据库中的72000条数据构建索引,该过程将持续几个小时,但可以随时终止。

如果不熟悉Whoosh库的构建索引和query搜索功能,可以参考运行indexbuilder/sample.py。

运行indexbuilder/query.py来测试搜索功能。

运行searchengine/run_server.py打开搜索网页服务器,在浏览器中打开127.0.0.1:8000进入搜索页面执行搜索。

3 所需python库

scrapy

requests

pymongo

whoosh

jieba

django

4 所需数据库

MongoDB

Mongo Management Studio 可视化工具(可选)

5 爬虫特性

爬虫代码位于sduspider/目录下。

5.1 爬取内容

Item

Item name

标题

newsTitle

链接

newsUrl

阅读量

newsCliek

发布时间

newsPublishTime

文章内容

newsContent

# spider.py

# 爬取当前网页

print('start parse : ' + response.url)

self.destination_list.remove(response.url)

if response.url.startswith("http://www.view.sdu.edu.cn/info/"):

item = NewsItem()

for box in response.xpath('//div[@class="new_show clearfix"]/div[@class="le"]'):

# article title

item['newsTitle'] = box.xpath('.//div[@class="news_tit"]/h3/text()').extract()[0].strip()

# article url

item['newsUrl'] = response.url

item['newsUrlMd5'] = self.md5(response.url)

# article click time

item['newsClick'] = box.xpath('.//div[@class="news_tit"]/p/span/script/text()').extract()[0].strip()

pattern = re.compile(r'\(.*?\)')

parameters = re.search(pattern, item['newsClick']).group(0)

parameters = parameters[1:-1].split(',')

parameters[0] = re.search(re.compile(r'\".*?\"'), parameters[0]).group(0)[1:-1]

parameters[1] = parameters[1].strip()

parameters[2] = parameters[2].strip()

request_url = 'http://www.view.sdu.edu.cn/system/resource/code/news/click/dynclicks.jsp'

request_data = {'clicktype': parameters[0], 'owner': parameters[1], 'clickid': parameters[2]}

request_get = requests.get(request_url, params=request_data)

item['newsClick'] = request_get.text

# article publish time

item['newsPublishTime'] = box.xpath('.//div[@class="news_tit"]/p[not(@style)]/text()').extract()[0].strip()[5:]

# article content

item['newsContent'] = box.xpath('.//div[@class="news_content"]').extract()[0].strip()

regexp = re.compile(r']+>', re.S)

item['newsContent'] = regexp.sub('',item['newsContent']) # delete templates <>

# 索引构建flag

item['indexed'] = 'False'

# yield it

yield item

5.2 宽度优先搜索爬取

# settings.py

# 先进先出,广度优先

DEPTH_PRIORITY = 1

SCHEDULER_DISK_QUEUE = 'scrapy.squeue.PickleFifoDiskQueue'

SCHEDULER_MEMORY_QUEUE = 'scrapy.squeue.FifoMemoryQueue'

5.3 二分法去重

所有已经爬取过的网址都会以MD5特征的形式顺序存储在list中,当获取新的url时,通过二分法查找list中是否存在该url的特征值,以达到去重的目的。

Scrapy库自带了查重去重的功能,但为了保证效率,自行编写了二分法去重,但并未关闭scrapy库自带的去重功能。

# spider.py

# md5 check

md5_url = self.md5(real_url)

if self.binary_md5_url_search(md5_url) > -1: # 二分法查找存在当前MD5

pass

else:

self.binary_md5_url_insert(md5_url) # 二分法插入当前MD5

self.destination_list.append(real_url) # 插入爬虫等待序列

yield scrapy.Request(real_url, callback=self.parse, errback=self.errback_httpbin)

5.4 断点续爬

每爬取一定次数后都会将当前爬虫状态存储在pause文件夹下,重新运行爬虫时会继续上一次保存的断点进行爬取。Scrapy有自带的断点续爬功能(在settings.py中设置),但貌似在Pycharm中行不通。

# spider.py

# counter++,并在合适的时候保存断点

def counter_plus(self):

print('待爬取网址数:' + (str)(len(self.destination_list)))

# 断点续爬功能之保存断点

if self.counter % self.save_frequency == 0: # 爬虫经过save_frequency次爬取后

print('Rayiooo:正在保存爬虫断点....')

f = open('./pause/response.seen', 'wb')

pickle.dump(self.url_md5_seen, f)

f.close()

f = open('./pause/response.dest', 'wb')

pickle.dump(self.destination_list, f)

f.close()

self.counter = self.save_frequency

self.counter += 1 # 计数器+1

5.5 数据存入MongoDB

关系类数据库不适用于爬虫数据存储,因此使用非关系类数据库MongoDB。数据库可以用可视化工具方便查看,例如Mongo Management Studio。

# pipelines.py

class MongoDBPipeline(object):

def __init__(self):

host = settings["MONGODB_HOST"]

port = settings["MONGODB_PORT"]

dbname = settings["MONGODB_DBNAME"]

sheetname = settings["MONGODB_SHEETNAME"]

# 创建MONGODB数据库链接

client = pymongo.MongoClient(host=host, port=port)

# 指定数据库

mydb = client[dbname]

# 存放数据的数据库表名

self.post = mydb[sheetname]

def process_item(self, item, spider):

data = dict(item)

# self.post.insert(data) # 直接插入的方式有可能导致数据重复

# 更新数据库中的数据,如果upsert为Ture,那么当没有找到指定的数据时就直接插入,反之不执行插入

self.post.update({'newsUrlMd5': item['newsUrlMd5']}, data, upsert=True)

return item

6 索引构建特性

索引构建代码位于indexbuilder/目录下。

6.1 断点续构

构建倒排索引的过程比较缓慢,每小时只能构建10000条新闻的索引,因此在索引构建时及时存储新构建的索引,以保证能够断点续构。

6.2 中文分词

Whoosh自带的Analyzer分词仅针对英文文章,而不适用于中文。从jieba库中引用的ChineseAnalyzer保证了能够对Documents进行中文分词。同样,ChineseAnalyzer在search时也能够对中文查询query提取关键字并进行搜索。

# index_builder.py

from jieba.analyse import ChineseAnalyzer

analyzer = ChineseAnalyzer()

# 创建索引模板

schema = Schema(

newsId=ID(stored=True),

newsTitle=TEXT(stored=True, analyzer=analyzer),

newsUrl=ID(stored=True),

newsClick=NUMERIC(stored=True, sortable=True),

newsPublishTime=TEXT(stored=True),

newsContent=TEXT(stored=False, analyzer=analyzer), # 文章内容太长了,不存

)

6.3 Query类提供搜索API

Query类自动执行了从index索引文件夹中取倒排索引来执行搜索,并返回一个结果数组。

# query.py

if __name__ == '__main__':

q = Query()

q.standard_search('软件园校区')

7 搜索引擎特性

搜索引擎代码位于searchengine/目录下。

7.1 Django搭建Web界面

Django适合Web快速开发。result页面继承了main页面,搜索结果可以按照result中的指示显示在页面中。在django模板继承下,改变main.html中的页面布局,result.html的布局也会相应改变而不必使用Ctrl+c、Ctrl+v的方式改变。

# view.py

def search(request):

res = None

if 'q' in request.GET and request.GET['q']:

res = q.standard_search(request.GET['q']) # 获取搜索结果

c = {

'query': request.GET['q'],

'resAmount': len(res),

'results': res,

}

else:

return render_to_response('main.html')

return render_to_response('result.html', c) # 展示搜索结果

7.2 搜索迅速

第一次搜索时,可能因为倒排索引index的取出时间较长而搜索缓慢,但一旦index取出,对于70000余条新闻的搜索将非常迅速,秒出结果。

参考资料

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值