股票市场涨涨跌跌,好像毫无规律,但有一些人却凭借自己的直觉掌握了一些特殊规律,从而实现在股票上的实现斩获。现在在人工智能时代,Python+AI框架,无疑会利用人工智能优势可以对股票市场进行特征学习,抓取比凭借个人感觉更多的股票数字特征。本文要介绍的就是利用Python+keras对股票进行时间序列上的数字特征预测。
用Python结合人工智能尝试预测股票,会成就下一个股神?
预备条件:
假设您熟悉python,并且已经在系统中安装了python 3。本教程中使用了jupyter笔记本。您可以使用自己喜欢的IDE。
使用的数据集:
本教程中使用的数据集是基于Tushare获取的股票信息。更多股票代码可以用下面的搜索工具获取。至于Tushare的使用,可以参考以前的python神级技巧,不要爬虫一分钟获取股票基金持股情况文章学习。
搜更多精彩内容
股票查询
安装所需的库
对于此项目,您需要在python中安装以下软件包。如果未安装,则只需使用即可pip install PackageName。
NumPy —该库提供快速计算的n维数组对象。Pandas —它提供了一个数据框和序列,可以对数据执行操作和分析。matplotlib —该库有助于使用各种图表来可视化数据。scikit-learn —这是一个机器学习库,提供了用于预测分析的各种工具和算法。我们将使用其工具或功能进行数据预处理。Keras —这是一个基于TensorFlow的高级深度学习库,用于提供神经网络的简单实现。我们之所以使用它,是因为它对初学者友好且易于实施。TensorFlow -这个库是由所需Kera