将列向量合成矩阵_矩阵的四大基础子空间

本文详细介绍了矩阵的四大基础子空间:列空间、行空间、零空间和左零空间。列空间是矩阵列向量的线性组合构成的空间,行空间则是行向量的线性组合空间。零空间是满足矩阵相乘为零的向量集合,而左零空间是矩阵左乘后为零的向量集合。此外,文章还探讨了子空间的维数关系、正交性质及其在线性变换中的应用。
摘要由CSDN通过智能技术生成

向量空间:比如一个二维空间、三维空间等等,一般我们定义写作

,它代表由
所有含有n个成分的列向量构成的空间。比如我们
空间就包含了所有含有3个成分的列向量

子空间:显然一个

空间是可以含有很多子空间的。以
空间为例,他可以含有一个二维平面子空间(过原点的一个平面)

对于一个m×n的矩阵

,其蕴含四个重要的基础子空间:

1、列空间(Column Space)

2、行空间(Row Space)

3、零空间(Null Space),

4、左零空间(Left Null Space)

接下来我们挨个看一下。


一、列空间

我们对A做下列向量拆分:

,
, ..... ,

对于矩阵A而言,它包含了n个m维列向量,那么A的列空间就是:这n个m维列向量的线性长成空间(Span)。

①我们把矩阵A的列空间记做:

①由于每个列向量都是m维的,所以

的子空间

②此时列空间

中的任何一个向量都可以如下表示:
(其中
是一个常量). 这个式子是很精妙的,可以将其展开看一下:
,显然这个就代表了列向量可以构成的任意一个向量了。

③所以我们可以将

认为是:A矩阵右乘一个比例因子向量
的向量空间

从这延伸一下:对于一个线性方程组可以写成矩阵乘法的形式

,只有当向量
(也就是解向量)可以写成矩阵A的各列的线性组合的形式时,才意味着方程组有解。换句话说:当且仅当
在矩阵A的列空间中时,方程才有解。

二、行空间

我们对A做行向量拆分

,
,.....,

同上,我们可以得到如下结论:

①我们把矩阵A的行空间记做:

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值