华景机器人怎么控制_【华景QQ机器人怎么用】华景QQ机器人好不好_使用技巧-ZOL软件百科...

发布日期:2016年02月21日 Release 2 && Release 3新增功能和优化及修复

修复严重崩溃问题。

全面支持emoji表情。

修复某些用户不能登录。

轻量级重包处理。

优化消息显示。

修复一个数组越界错误。

修复一个数组下标不能为0错误。

加快消息处理速度。

UI线程与消息处理分离。

减少容易黑屏卡死的可能。

Release 1 && Beta 1新增功能和优化及修复

1、优化消息显示性能与效果。

2、分离运行日志。

3、获取头像。

4、新增Api HookOriginalPacket_Temp。

5、新增Api UnHookOriginalPacket。

6、新增Api ConvertQunNumber。

7、删除冗余代码。

8、优化消息处理。

9、废除旧图片发送方式。

10、修复QQ号大于2147483647无法发送图片,语音。

11、新增私聊语音。

12、新增获取私聊语音。

13、新增Api GetVoiceLink。

14、新增Api SendVoice。

15、新增Api SendVoice_B。

16、修复私聊发送语音代码失败。

17、修复私聊发送语音文件重复。

18、新增私聊支持发送群图片代码。

19、新增群支持发送私聊图片代码。

20、改造消息发送线程。

21、新增临时会话消息延迟发送。

22、新增讨论组消息延迟发送。

23、新增支持URL图片发送。

24、更新QQ8.1协议。

25、新增Api GetTimestamp。

26、新增假死检测。

27、修复守护程序Bug。

28、修复进程通讯Bug。

29、优化休眠显示。

30、新增完整性校验,自动下载缺失文件。

31、修复密码输入框无法使用右键。

32、优化协议。

33、修复群语音无法播放。

34、修复将签到、撤回等消息识别为禁言消息。

35、修复程序启动缓慢。

36、新增支持设备锁。

37、修复手机发的群图片获取失败。

38、修复原创表情获取失败。

39、新增企业QQ协议。

40、修复群列表可能获取异常。

41、新增识别amr、silk语音编码支持。

42、修复可能的崩溃问题。

43、新增自动禁止可能导致崩溃的插件加载。

44、修复可能的崩溃问题。

45、精简登录步骤。

46、修复SSOClientkey更新出错。

47、修复长时间运行后重新登录失败。

48、修复手机群消息获取异常。

49、新增获取红包消息。

50、改进消息处理架构。

51、修复智能回复存在的潜在问题。

52、改进通讯处理架构。

华景QQ机器人7.4 Build 02210 Release 3

日期:2016-02-21

大小:3.30MB

平台:win10/win8/7/Vista/xp/2008/2k3

华景QQ机器人7.3 Build 12130 Release 5

2015年12月13日

发布日期:2015年12月13日 Release 5新增功能和优化及修复

1、修复某些情况发送群图片失败。

2、更新协议。

3、登陆默认不启用安卓协议。

4、点歌不需要安卓协议。

5、修复登录窗口放着一段时间后崩溃。

6、掉线、冻结、重登失败时,托盘变为灰色。

Release 2新增功能和优化及修复

1、修复登录提示不支持令牌登录。

2、修复两个数组错误。

3、尝试解决崩溃不重启。

4、优化更新下载模块。

Release 1新增功能和优化及修复

1、优化同步处理。

2、解决崩溃托盘图标残留。

3、优化SEH异常处理,可提供调用堆栈。

4、优化发图。

5、Api新增语音功能。

6、Api新增发图功能。

7、插件支持异常处理。

8、新增SEH_GOTO,可定位异常代码位置。

9、Api支持获取图片地址。

10、Api支持获取语音地址。

11、修复两个数组超标错误。

12、BUG自动反馈。

&nbsp

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值