今天我把这些问题的细节做了一些改善,重新做了模型,发觉模型结果比我预想中的要棒!!主要修改如下:
1、将邻居矩阵从2维扩充为35维;(据我测算,一般为整个数据集中用户数的5%最佳,50维出现了一些空值)
2、将欧氏距离上限标准化去掉,这样能更有效的匹配到相似度更高的用户。
后续在执行推荐算法的过程中发现,一个一个计算每一个用户的推荐产品太傻,我需要来一个循环语句来执行推荐算法!
过程中主要问题如下:
1、并不是所有用户都有相似用户,在执行语句中会报错——这里我需要一个语句能识别报错并跳过继续执行;
2、如何把所有执行的结果放入一个矩阵,并且识别是哪一个用户——这里需要一个空矩阵将用户ID和结果装入。
最终代码编写如下:
#组建初始化空矩阵
R
#循环运行推荐程序并将结果并入到空矩阵
for (i in 1:nrow(S))
#循环执行推荐程序
try({
#将ID放到结果之前
R1=cbind(c(rep(i,3),UserBasedRecommender(i,RECOMMENDER_NUM,M,S,N)))
#将ID和结果一起并入空矩阵
R
}
,silent = T)
#删除结果矩阵1,2行以及第一列
c
write.csv(c,file = 'hnjbtj1.csv')
结果如下: