python 报错继续执行_R语言函数报错继续执行方法

今天我把这些问题的细节做了一些改善,重新做了模型,发觉模型结果比我预想中的要棒!!主要修改如下:

1、将邻居矩阵从2维扩充为35维;(据我测算,一般为整个数据集中用户数的5%最佳,50维出现了一些空值)

2、将欧氏距离上限标准化去掉,这样能更有效的匹配到相似度更高的用户。

后续在执行推荐算法的过程中发现,一个一个计算每一个用户的推荐产品太傻,我需要来一个循环语句来执行推荐算法!

过程中主要问题如下:

1、并不是所有用户都有相似用户,在执行语句中会报错——这里我需要一个语句能识别报错并跳过继续执行;

2、如何把所有执行的结果放入一个矩阵,并且识别是哪一个用户——这里需要一个空矩阵将用户ID和结果装入。

最终代码编写如下:

#组建初始化空矩阵

R

#循环运行推荐程序并将结果并入到空矩阵

for (i in 1:nrow(S))

#循环执行推荐程序

try({

#将ID放到结果之前

R1=cbind(c(rep(i,3),UserBasedRecommender(i,RECOMMENDER_NUM,M,S,N)))

#将ID和结果一起并入空矩阵

R

}

,silent = T)

#删除结果矩阵1,2行以及第一列

c

write.csv(c,file = 'hnjbtj1.csv')

结果如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值