matlab输入输出参数都是矩阵,编制一个matlab函数文件,输入参数是一个m*n的矩阵,输出......

这是一个MATLAB函数rref的实现,用于计算矩阵的简化行阶梯形形式。函数接受一个m*n矩阵作为输入,并根据给定的公差返回矩阵及其秩。在函数内部,它通过查找最大元素、交换行和除以主元来逐步处理矩阵。如果输入元素为有理数,函数会返回相应的有理数形式。问题在于运行时第24行出现错误,需要进一步调查原因。
摘要由CSDN通过智能技术生成

function [A,jb] = rref(A,tol)

%RREF   Reduced row echelon form.

%   R = RREF(A) produces the reduced row echelon form of A.

%

%   [R,jb] = RREF(A) also returns a vector, jb, so that:

%       r = length(jb) is this algorithm's idea of the rank of A,

%       x(jb) are the bound variables in a linear system, Ax = b,

%       A(:,jb) is a basis for the range of A,

%       R(1:r,jb) is the r-by-r identity matrix.

%

%   [R,jb] = RREF(A,TOL) uses the given tolerance in the rank tests.

%

%   Roundoff errors may cause this algorithm to compute a different

%   value for the rank than RANK, ORTH and NULL.

%

%   Class support for input A:

%      float: double, single

%

%   See also RANK, ORTH, NULL, QR, SVD.

%   Copyright 1984-2005 The MathWorks, Inc.

%   $Rev

输入输出系统的参数辨识可以使用最小二乘法来进行。具体步骤如下: 1. 定义系统模型 假设系统模型为: y(t) = b1*u(t) + b2*u(t-1) + ... + bm*u(t-m+1) 其中,y(t)为系统输出,u(t)为系统输入,b1 ~ bm为待辨识参数,m为系统阶数。 2. 收集实验数据 在实验过程中,输入u(t)和对应的输出y(t)需要被记录下来。 3. 构造数据矩阵输入u(t)和输出y(t)按顺序放入矩阵中,如下所示: U = [u(m), u(m-1), ..., u(1); u(m+1), u(m), ..., u(2); ... u(N-1), u(N-2), ..., u(N-m+1)] Y = [y(m); y(m+1); ... y(N-1)] 其中,N为数据点数。 4. 求解待辨识参数 利用最小二乘法,求解出待辨识参数b1 ~ bm。具体方法是: B = inv(U'*U)*U'*Y 其中,B为待辨识参数向量。 5. 验证模型 将待辨识参数代入系统模型中,得到预测输出y_pred(t),与实际输出y(t)进行比较,计算出预测误差e(t): y_pred(t) = b1*u(t) + b2*u(t-1) + ... + bm*u(t-m+1) e(t) = y(t) - y_pred(t) 6. 编写MATLAB函数 下面是一个MATLAB函数,用于实现单输入输出系统的prediction error method系统参数辨识方法: ```matlab function [B, e] = pem(U, Y, m) % 单输入输出系统参数辨识函数 % 输入: % U:输入矩阵(m x N-m+1) % Y:输出向量(N-m+1 x 1) % m:系统阶数 % 输出: % B:待辨识参数向量(m x 1) % e:预测误差向量(N-m+1 x 1) % 构造数据矩阵 U = flipud(buffer(U, m, m-1)); Y = Y(m:end); % 求解待辨识参数 B = inv(U'*U)*U'*Y; % 验证模型 y_pred = U*B; e = Y - y_pred; end ``` 使用方法如下: ```matlab % 生成数据 N = 1000; u = randn(N, 1); y = filter([1, 2, 3], 1, u) + randn(N, 1)*0.1; % 参数辨识 m = 3; [B, e] = pem(u, y, m); % 绘制结果 figure; subplot(211); plot(1:N, y, 'b', 1:N-m+1, u(m:end), 'r'); legend('y', 'u'); subplot(212); plot(1:N-m+1, e); title('Prediction Error'); ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值