resnet网络结构_融合算法九---ResNet

一.简介

ResNet是residual network(残差网络)的缩写,论文《Infrared and Visible Image Fusion with ResNet and zero-phase component analysis》。

https://github.com/hli1221/imagefusion_resnet50​github.com

论文中,作者探讨了传统的图像融合的方法,基于MSD(multi-scale decompsition)方法的,基于SR(spatial representation)方法的,包括近几年神经网络的发展,借助于神经网络的(DLF,DeepFuse, DenseFuse)等,作者提到(DeepFuse,DenseFuse)网络结构过于简单,隐藏在深层的信息没用被用到,所以作者提出了本文的方法。hli1221/imagefusion_resnet50 论文中,作者探讨了传统的图像融合的方法,基于MSD(multi-scale decompsition)方法的,基于SR(spatial representation)方法的,包括近几年神经网络的发展,借助于神经网络的(DLF,DeepFuse, DenseFuse)等,作者提到(DeepFuse,DenseFuse)网络结构过于简单,隐藏在深层的信息没用被用到,所以作者提出了本文的方法。

作者的方法主要分为三个步骤:1)使用ResNet-50提取原始图像的深度特征;2)使用ZCA来标准化深度特征,并生成初始权重,然后使用softmax操作结合初始化权重得到最终的权重;3)使用加权平均的策略对原始图像进行融合。

f51bacedb18b29e9acc84a3f7c95f73a.png
算法结构图

二.算法详解

2.1 特征提取

上图中,原始图片包含图片1和图片2,使用已经在ImageNet上训练过的ResNet50网络(50层,包含5个卷积快,conv1,...conv5),第

层的输出用
表示,
表示原始图片,
代表的是通道,这一步,套用ResNet50网络就可以得到。

2.2 权重计算

使用ZCA与L1-norm的方法来获取权重矩阵,作者在文中使用了

来计算权重。

9e545134a7aa3e2088ef899e292e63f5.png
ZCA

计算协方差矩阵,并使用SVD对协方差矩阵进行分解,

代表通道:

计算使用ZCA去相关性后的的

计算得到所有通道的

后,选择窗口
,大小为5*5,对
进行L1-norm平均:

在得到

,后使用softmax计算权重,然后使用bicubic插值算法进行上采样,得到和原图像大小一致的权重矩阵:

e7d2349b245175d7512dd98042e50d74.png

2.3 重建图像

得到权重矩阵后,使用加权平均的策略,对原始的两幅图像进行加权平均:

7b43e2794fc5155403bb379441f0fffd.png
不同网络之间的对比

a9080660e1a4ce0d6bad2db4449ff9ab.png
不同标准化方式之间的对比

0caf7f18753daa414118f7b5f58b4b60.png
不同融合方法之间的对比

三.总结

本文使用了残差网络和ZCA算法对红外图像、可见光图像进行融合,在一些性能指标上优于一些其他的算法,在实际使用中,需要使用GPU对ResNet50网络进行加速以减少计算的时间。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值