一.简介
ResNet是residual network(残差网络)的缩写,论文《Infrared and Visible Image Fusion with ResNet and zero-phase component analysis》。
https://github.com/hli1221/imagefusion_resnet50github.com论文中,作者探讨了传统的图像融合的方法,基于MSD(multi-scale decompsition)方法的,基于SR(spatial representation)方法的,包括近几年神经网络的发展,借助于神经网络的(DLF,DeepFuse, DenseFuse)等,作者提到(DeepFuse,DenseFuse)网络结构过于简单,隐藏在深层的信息没用被用到,所以作者提出了本文的方法。hli1221/imagefusion_resnet50 论文中,作者探讨了传统的图像融合的方法,基于MSD(multi-scale decompsition)方法的,基于SR(spatial representation)方法的,包括近几年神经网络的发展,借助于神经网络的(DLF,DeepFuse, DenseFuse)等,作者提到(DeepFuse,DenseFuse)网络结构过于简单,隐藏在深层的信息没用被用到,所以作者提出了本文的方法。
作者的方法主要分为三个步骤:1)使用ResNet-50提取原始图像的深度特征;2)使用ZCA来标准化深度特征,并生成初始权重,然后使用softmax操作结合初始化权重得到最终的权重;3)使用加权平均的策略对原始图像进行融合。
二.算法详解
2.1 特征提取
上图中,原始图片包含图片1和图片2,使用已经在ImageNet上训练过的ResNet50网络(50层,包含5个卷积快,conv1,...conv5),第
2.2 权重计算
使用ZCA与L1-norm的方法来获取权重矩阵,作者在文中使用了
计算协方差矩阵,并使用SVD对协方差矩阵进行分解,
计算使用ZCA去相关性后的的
计算得到所有通道的
在得到
2.3 重建图像
得到权重矩阵后,使用加权平均的策略,对原始的两幅图像进行加权平均:
三.总结
本文使用了残差网络和ZCA算法对红外图像、可见光图像进行融合,在一些性能指标上优于一些其他的算法,在实际使用中,需要使用GPU对ResNet50网络进行加速以减少计算的时间。