bagging算法_机器学习算法四:Bagging及随机森林Random Forest

一、Bagging (bootstrap aggregating)

Bagging即套袋法,是基于自助采样法(booststrap sampling),其算法过程如下:

  1. 给定包含m个样本的数据集,有放回的进行m次采样,得到含有m个样本的训练集。共进行T轮抽取,得到T个训练集。(T个训练集相互独立)
  2. 每次使用一个训练集得到一个模型,T个训练集共得到T个基学习器。
  3. 对分类问题:将上步得到的T个模型采用投票的方式得到分类结果;对回归问题,计算上述模型的均值作为最后的结果。

从偏差-方差分解的角度看,Bagging主要关注降低方差,因此它在不剪枝决策树、神经网络等易受样本扰动的学习器上效用更为明显。

二、随机森林

随机森林是Bagging是一个扩展变体。RF在以决策树为基学习器构建Bagging集成的基础上,进一步在决策树的训练过程中引入了随机属性选择。

传统决策树在选择划分属性时,是在当前节点的属性集合中选择一个最优属性,而在RF中,对基决策树的每个节点,先从该节点的属性集合中随机选择一个包含k个属性的子集,然后再从这个子集中选择一个最优属性用于划分。这里的参数k控制了随机性的引入程度:若令

,则基决策树的构建与传统决策树相同;若令
,则是随机选择一个属性用于划分;一般情况下,推荐值

三、sklearn参数详解

classsklearn.ensemble.RandomForestClassifier(n_estimators=’warn’,criterion=’gini’,max_depth=None,min_samples_split=2,min_samples_leaf=1,min_weight_fraction_leaf=0.0,max_features=’auto’,max_leaf_nodes=None,min_impurity_decrease=0.0,min_impurity_split=None,bootstrap=True,oob_score=False,n_jobs=None,random_state=None,verbose=0,warm_start=False,class_weight=None)

sklearn参数

Parameters:n_estimators:integer, optional (default=10)
The number of trees in the forest.
Changed in version 0.20: The default value of n_estimators will change from 10 in version 0.20 to 100 in version 0.22.
criterion:string, optional (default=”gini”)
The function to measure the quality of a split. Supported criteria are “gini” for the Gini impurity and “entropy” for the information gain. Note: this parameter is tree-specific.
max_depth:integer or None, optional (default=None)
The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples.
min_samples_split:int, float, optional (default=2)
The minimum number of samples required to split an internal node:
If int, then consider min_samples_split as the minimum number.
If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are the minimum number of samples for each split.
Changed in version 0.18: Added float values for fractions.
min_samples_leaf:int, float, optional (default=1)
The minimum number of samples required to be at a leaf node. A split point at any depth will only be considered if it leaves at least min_samples_leaf training samples in each of the left and right branches. This may have the effect of smoothing the model, especially in regression.
If int, then consider min_samples_leaf as the minimum number.
If float, then min_samples_leaf is a fraction and ceil(min_samples_leaf * n_samples) are the minimum number of samples for each node.
Changed in version 0.18: Added float values for fractions.
min_weight_fraction_leaf:float, optional (default=0.)
The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided.
max_features:int, float, string or None, optional (default=”auto”)
The number of features to consider when looking for the best split:
If int, then consider max_features features at each split.
If float, then max_features is a fraction and int(max_features * n_features) features are considered at each split.
If “auto”, then max_features=sqrt(n_features).
If “sqrt”, then max_features=sqrt(n_features) (same as “auto”).
If “log2”, then max_features=log2(n_features).
If None, then max_features=n_features.
Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than max_features features.
max_leaf_nodes:int or None, optional (default=None)
Grow trees with max_leaf_nodes in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes.
min_impurity_decrease:float, optional (default=0.)
A node will be split if this split induces a decrease of the impurity greater than or equal to this value.
The weighted impurity decrease equation is the following:
N_t / N * (impurity - N_t_R / N_t * right_impurity - N_t_L / N_t * left_impurity)
where N is the total number of samples, N_t is the number of samples at the current node, N_t_L is the number of samples in the left child, and N_t_R is the number of samples in the right child.
N, N_t, N_t_R and N_t_L all refer to the weighted sum, if sample_weight is passed.
New in version 0.19.
min_impurity_split:float, (default=1e-7)
Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf.
Deprecated since version 0.19: min_impurity_split has been deprecated in favor ofmin_impurity_decrease in 0.19. The default value of min_impurity_split will change from 1e-7 to 0 in 0.23 and it will be removed in 0.25. Use min_impurity_decrease instead.
bootstrap:boolean, optional (default=True)
Whether bootstrap samples are used when building trees. If False, the whole datset is used to build each tree.
oob_score:bool (default=False)
Whether to use out-of-bag samples to estimate the generalization accuracy.
n_jobs:int or None, optional (default=None)
The number of jobs to run in parallel for both fit and predict. None means 1 unless in a joblib.parallel_backend context. -1 means using all processors. See Glossary for more details.
random_state:int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random.
verbose:int, optional (default=0)
Controls the verbosity when fitting and predicting.
warm_start:bool, optional (default=False)
When set to True, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. See the Glossary.
class_weight:dict, list of dicts, “balanced”, “balanced_subsample” or None, optional (default=None)
Weights associated with classes in the form {class_label: weight}. If not given, all classes are supposed to have weight one. For multi-output problems, a list of dicts can be provided in the same order as the columns of y.
Note that for multioutput (including multilabel) weights should be defined for each class of every column in its own dict. For example, for four-class multilabel classification weights should be [{0: 1, 1: 1}, {0: 1, 1: 5}, {0: 1, 1: 1}, {0: 1, 1: 1}] instead of [{1:1}, {2:5}, {3:1}, {4:1}].
The “balanced” mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as n_samples / (n_classes * np.bincount(y))
The “balanced_subsample” mode is the same as “balanced” except that weights are computed based on the bootstrap sample for every tree grown.
For multi-output, the weights of each column of y will be multiplied.
Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值