python图像物体的自动标注_图像标注 python实现-普通RNN篇

layer.py 分步实现各个层之间的计算importnumpy as np"""This file defines layer types that are commonly used for recurrent neural

networks."""

defrnn_step_forward(x, prev_h, Wx, Wh, b):"""Run the forward pass for a single timestep of a vanilla RNN that uses a tanh

activation function.

Inputs:

- x: Input data for this timestep, of shape (N, D).

- prev_h: Hidden state from previous timestep, of shape (N, H)

- Wx: Weight matrix for input-to-hidden connections, of shape (D, H)

- Wh: Weight matrix for hidden-to-hidden connections, of shape (H, H)

- b: Biases of shape (H,)

Returns a tuple of:

- next_h: Next hidden state, of shape (N, H)

- cache: Tuple of values needed for the backward pass."""next_h, cache=None, None##############################################################################

#TODO: Implement a single forward step for the vanilla RNN. Store the next #

#hidden state and any values you need for the backward pass in the next_h #

#and cache variables respectively. #

##############################################################################

a=prev_h.dot(Wh)+x.dot(Wx)+b

next_h=np.tanh(a)

cache=(x,prev_h,Wh,Wx,b,next_h)returnnext_h, cachedefrnn_step_backward(dnext_h, cache):"""Backward pass for a single timestep of a vanilla RNN.

Inputs:

- dnext_h: Gradient of loss with respect to next hidden state

- cache: Cache object from the forward pass

Returns a tuple of:

- dx: Gradients of input data, of shape (N, D)

- dprev_h: Gradients of previous hidden state, of shape (N, H)

- dWx: Gradients of input-to-hidden weights, of shape (D, H)

- dWh: Gradients of hidden-to-hidden weights, of shape (H, H)

- db: Gradients of bias vector, of shape (H,)"""dx, dprev_h, dWx, dWh, db=None, None, None, None, None##############################################################################

#TODO: Implement the backward pass for a single step of a vanilla RNN. #

##

#HINT: For the tanh function, you can compute the local derivative in terms #

#of the output value from tanh. #

##############################################################################

x,prev_h,Wh,Wx,b,next_h=cache

da=dnext_h*(1-next_h*next_h)

dx=da.dot(Wx.T)

dprev_h=da.dot(Wh.T)

dWx=x.T.dot(da)

dWh=prev_h.T.dot(da)

db=np.sum(da,axis=0)returndx, dprev_h, dWx, dWh, dbdefrnn_forward(x, h0, Wx, Wh, b):"""Run a vanilla RNN forward on an entire sequence of data. We assume an input

sequence composed of T vectors, each of dimension D. The RNN uses a hidden

size of H, and we work over a minibatch containing N sequences. After running

the RNN forward, we return the hidden states for all timesteps.

Inputs:

- x: Input data for the entire timeseries, of shape (N, T, D).

- h0: Initial hidden state, of shape (N, H)

- Wx: Weight matrix for input-to-hidden connections, of shape (D, H)

- Wh: Weight matrix for hidden-to-hidden connections, of shape (H, H)

- b: Biases of shape (H,)

Returns a tuple of:

- h: Hidden states for the entire timeseries, of shape (N, T, H).

- cache: Values needed in the backward pass"""h, cache=None, None##############################################################################

#TODO: Implement forward pass for a vanilla RNN running on a sequence of #

#input data. You should use the rnn_step_forward function that you defined #

#above. You can use a for loop to help compute the forward pass. #

##############################################################################

N,T,D=x.shape

H=b.shape[0]

h=np.zeros((N,T,H))

prev_h=h0

cache=[]for t inrange(T):

xt=x[:,t,:]

next_h,step_cache=rnn_step_forward(xt,prev_h,Wx,Wh,b)

cache.append(step_cache)

h[:,t,:]=next_h

prev_h=next_hreturnh, cachedefrnn_backward(dh, cache):"""Compute the backward pass for a vanilla RNN over an entire sequence of data.

Inputs:

- dh: Upstream gradients of all hidden states, of shape (N, T, H)

Returns a tuple of:

- dx: Gradient of inputs, of shape (N, T, D)

- dh0: Gradient of initial hidden state, of shape (N, H)

- dWx: Gradient of input-to-hidden weights, of shape (D, H)

- dWh: Gradient of hidden-to-hidden weights, of shape (H, H)

- db: Gradient of biases, of shape (H,)"""dx, dh0, dWx, dWh, db=None, None, None, None, None##############################################################################

#TODO: Implement the backward pass for a vanilla RNN running an entire #

#sequence of data. You should use the rnn_step_backward function that you #

#defined above. You can use a for loop to help compute the backward pass. #

##############################################################################

N,T,H=dh.shape

D=cache[0][0].shape[1]

dprev_h=np.zeros((N,H))

dx=np.zeros((N,T,D))

dWx=np.zeros((D,H))

dWh=np.zeros((H,H))

db=np.zeros((H,))for t inrange(T):

t=T-1-t

dx[:,t,:], dprev_h, dWxt, dWht, dbt=rnn_step_backward(dh[:,t,:]+dprev_h,cache[t])

dWx, dWh, db= dWx+dWxt, dWh+dWht, db+dbt

dh0=dprev_hreturndx, dh0, dWx, dWh, dbdefword_embedding_forward(x, W):"""Forward pass for word embeddings. We operate on minibatches of size N where

each sequence has length T. We assume a vocabulary of V words, assigning each

to a vector of dimension D.

Inputs:

- x: Integer array of shape (N, T) giving indices of words. Each element idx

of x muxt be in the range 0 <= idx < V.

- W: Weight matrix of shape (V, D) giving word vectors for all words.

Returns a tuple of:

- out: Array of shape (N, T, D) giving word vectors for all input words.

- cache: Values needed for the backward pass"""out, cache=None, None##############################################################################

#TODO: Implement the forward pass for word embeddings. #

N,T=x.shape

V,D=W.shape

out=np.zeros((N,T,D))for i inrange(N):for j inrange(T):

out[i,j]=W[x[i,j]]

cache=(x,W.shape)returnout, cachedefword_embedding_backward(dout, cache):"""Backward pass for word embeddings. We cannot back-propagate into the words

since they are integers, so we only return gradient for the word embedding

matrix.

HINT: Look up the function np.add.at

Inputs:

- dout: Upstream gradients of shape (N, T, D)

- cache: Values from the forward pass

Returns:

- dW: Gradient of word embedding matrix, of shape (V, D)."""dW=None##############################################################################

#TODO: Implement the backward pass for word embeddings. #

##

#Note that Words can appear more than once in a sequence. #

#HINT: Look up the function np.add.at #

##############################################################################

x,W_shape=cache

dW=np.zeros(W_shape)

np.add.at(dW,x,dout)returndWdefsigmoid(x):"""A numerically stable version of the logistic sigmoid function."""pos_mask= (x >=0)

neg_mask= (x <0)

z=np.zeros_like(x)

z[pos_mask]= np.exp(-x[pos_mask])

z[neg_mask]=np.exp(x[neg_mask])

top=np.ones_like(x)

top[neg_mask]=z[neg_mask]return top / (1 +z)deftemporal_affine_forward(x, w, b):"""Forward pass for a temporal affine layer. The input is a set of D-dimensional

vectors arranged into a minibatch of N timeseries, each of length T. We use

an affine function to transform each of those vectors into a new vector of

dimension M.

Inputs:

- x: Input data of shape (N, T, D)

- w: Weights of shape (D, M)

- b: Biases of shape (M,)

Returns a tuple of:

- out: Output data of shape (N, T, M)

- cache: Values needed for the backward pass"""N, T, D=x.shape

M=b.shape[0]

out= x.reshape(N * T, D).dot(w).reshape(N, T, M) +b

cache=x, w, b, outreturnout, cachedeftemporal_affine_backward(dout, cache):"""Backward pass for temporal affine layer.

Input:

- dout: Upstream gradients of shape (N, T, M)

- cache: Values from forward pass

Returns a tuple of:

- dx: Gradient of input, of shape (N, T, D)

- dw: Gradient of weights, of shape (D, M)

- db: Gradient of biases, of shape (M,)"""x, w, b, out=cache

N, T, D=x.shape

M=b.shape[0]

dx= dout.reshape(N *T, M).dot(w.T).reshape(N, T, D)

dw= dout.reshape(N * T, M).T.dot(x.reshape(N *T, D)).T

db= dout.sum(axis=(0, 1))returndx, dw, dbdef temporal_softmax_loss(x, y, mask, verbose=False):"""A temporal version of softmax loss for use in RNNs. We assume that we are

making predictions over a vocabulary of size V for each timestep of a

timeseries of length T, over a minibatch of size N. The input x gives scores

for all vocabulary elements at all timesteps, and y gives the indices of the

ground-truth element at each timestep. We use a cross-entropy loss at each

timestep, summing the loss over all timesteps and averaging across the

minibatch.

As an additional complication, we may want to ignore the model output at some

timesteps, since sequences of different length may have been combined into a

minibatch and padded with NULL tokens. The optional mask argument tells us

which elements should contribute to the loss.

Inputs:

- x: Input scores, of shape (N, T, V)

- y: Ground-truth indices, of shape (N, T) where each element is in the range

0 <= y[i, t] < V

- mask: Boolean array of shape (N, T) where mask[i, t] tells whether or not

the scores at x[i, t] should contribute to the loss.

Returns a tuple of:

- loss: Scalar giving loss

- dx: Gradient of loss with respect to scores x."""N, T, V=x.shape

x_flat= x.reshape(N *T, V)

y_flat= y.reshape(N *T)

mask_flat= mask.reshape(N *T)

probs= np.exp(x_flat - np.max(x_flat, axis=1, keepdims=True))

probs/= np.sum(probs, axis=1, keepdims=True)

loss= -np.sum(mask_flat * np.log(probs[np.arange(N * T), y_flat])) /N

dx_flat=probs.copy()

dx_flat[np.arange(N* T), y_flat] -= 1dx_flat/=N

dx_flat*=mask_flat[:, None]if verbose: print('dx_flat:', dx_flat.shape)

dx=dx_flat.reshape(N, T, V)return loss, dx

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值