快速排序的基本思想:首先选定一个数组中的一个初始值,将数组中比该值小的放在左边,比该值大的放在右边,然后分别对左边的数组进行如上的操作,对右边的数组进行如上的操作。(分治+递归)
1.利用匿名函数lambda
匿名函数的基本用法func_name = lambda x:array,冒号左边的x代表传入的参数,冒号右边的array代表返回值,当然名字是可以自己取的。
quick_sort = lambdaarray: \
arrayif len(array) <= 1\else quick_sort([item for item in array[1:] if item <=array[0]]) \+ [array[0]] +\
quick_sort([itemfor item in array[1:] if item > array[0]])
2.将匿名函数拆解封装为函数
deffunc2(array):if len(array)<=1:returnarray
tmp=array[0]
left= [x for x in array[1:] if x<=tmp]
right= [x for x in array[1:] if x>tmp]return func2(left) + [tmp] + func2(right)
3.网上常见的
deffunc2(array,left,right):if left>=right:returnlow=left
high=right
tmp=array[low]while lefttmp:
right-=1array[left]=array[right]while left
left+=1array[right]=array[left]
array[right]=tmp
func2(array,low,left-1)
func2(array,left+1,high)
4.算法导论里面的
deffunc3(array, l, r):if l
q=partition(array, l, r)
func3(array, l, q- 1)
func3(array, q+ 1, r)defpartition(array, l, r):
x=array[r]
i= l - 1
for j inrange(l, r):if array[j] <=x:
i+= 1array[i], array[j]=array[j], array[i]
array[i+ 1], array[r] = array[r], array[i + 1]return i + 1
5.利用栈实现非递归版本
deffunc4(array, l, r):if l >=r:returnstack=[]
stack.append(l)
stack.append(r)whilestack:
low=stack.pop(0)
high=stack.pop(0)if high - low <=0:continuex=array[high]
i= low - 1
for j inrange(low, high):if array[j] <=x:
i+= 1array[i], array[j]=array[j], array[i]
array[i+ 1], array[high] = array[high], array[i + 1]
stack.extend([low, i, i+ 2, high])
6.python内置的
sorted(array)
本来是想利用装饰器来测一下每个函数的运行时间的,但是由于快排里面存在递归,使用装饰器会报错,就只好一个个计算了。这里还是贴一下用装饰器计算时间的代码:
defcount_time(func):
@wraps(func)def helper(func,*args,**kwargs):
start=time()
result= func(*args,**kwargs)
end=time()print("函数:", func.__name__, "运行时间:", round(end - start, 4), "s")returnresultreturn helper
这里我们的输入是随机生成的在0-100间的整数,我们测试一下在不同数量下的消耗时间:
from functools importwrapsfrom random importrandintfrom time importtime
func1_start=time()
res=quick_sort(array)
func1_end=time()print("函数:func1 运行时间:", round(func1_end - func1_start, 4), "s")
func2_start=time()
func2(array)
func2_end=time()print("函数:func2 运行时间:", round(func2_end - func2_start, 4), "s")
func3_start=time()
func3(array,0,len(array)-1)
func3_end=time()print("函数:func3 运行时间:", round(func3_end - func3_start, 4), "s")
func4_start=time()
func4(array,0,len(array)-1)
func4_end=time()print("函数:func4 运行时间:", round(func4_end - func4_start, 4), "s")
func5_start=time()
func5(array,0,len(array)-1)
func5_end=time()print("函数:func5 运行时间:", round(func5_end - func5_start, 4), "s")
func6_start=time()
sorted(array)
func6_end=time()print("函数:func6 运行时间:", round(func6_end - func6_start, 4), "s")
输入array的定义:
array = [randint(0,100) for i in range(5000)]
需要注意的是,随着数据量的增加,方法4,也就是算法导论中的会出现以下问题:
这是因为python中的递归深度是有一定限制的,可以使用如下方法暂时解决该问题:
importsys
sys.setrecursionlimit(100000)
同时,方法4还会出现内存溢出问题,方法4也太坑了。
最后对比一下这些方法消耗的时间:
总结:
方法一、方法二速度较快,同时也较好理解,想要学会快速排序,只要记住方法二即可;
python内置的排序速度还是最快的呀;