python非递归快速排序_python--几种快速排序的实现以及运行时间比较

快速排序的基本思想:首先选定一个数组中的一个初始值,将数组中比该值小的放在左边,比该值大的放在右边,然后分别对左边的数组进行如上的操作,对右边的数组进行如上的操作。(分治+递归)

1.利用匿名函数lambda

匿名函数的基本用法func_name = lambda x:array,冒号左边的x代表传入的参数,冒号右边的array代表返回值,当然名字是可以自己取的。

quick_sort = lambdaarray: \

arrayif len(array) <= 1\else quick_sort([item for item in array[1:] if item <=array[0]]) \+ [array[0]] +\

quick_sort([itemfor item in array[1:] if item > array[0]])

2.将匿名函数拆解封装为函数

deffunc2(array):if len(array)<=1:returnarray

tmp=array[0]

left= [x for x in array[1:] if x<=tmp]

right= [x for x in array[1:] if x>tmp]return func2(left) + [tmp] + func2(right)

3.网上常见的

deffunc2(array,left,right):if left>=right:returnlow=left

high=right

tmp=array[low]while lefttmp:

right-=1array[left]=array[right]while left

left+=1array[right]=array[left]

array[right]=tmp

func2(array,low,left-1)

func2(array,left+1,high)

4.算法导论里面的

deffunc3(array, l, r):if l

q=partition(array, l, r)

func3(array, l, q- 1)

func3(array, q+ 1, r)defpartition(array, l, r):

x=array[r]

i= l - 1

for j inrange(l, r):if array[j] <=x:

i+= 1array[i], array[j]=array[j], array[i]

array[i+ 1], array[r] = array[r], array[i + 1]return i + 1

5.利用栈实现非递归版本

deffunc4(array, l, r):if l >=r:returnstack=[]

stack.append(l)

stack.append(r)whilestack:

low=stack.pop(0)

high=stack.pop(0)if high - low <=0:continuex=array[high]

i= low - 1

for j inrange(low, high):if array[j] <=x:

i+= 1array[i], array[j]=array[j], array[i]

array[i+ 1], array[high] = array[high], array[i + 1]

stack.extend([low, i, i+ 2, high])

6.python内置的

sorted(array)

本来是想利用装饰器来测一下每个函数的运行时间的,但是由于快排里面存在递归,使用装饰器会报错,就只好一个个计算了。这里还是贴一下用装饰器计算时间的代码:

defcount_time(func):

@wraps(func)def helper(func,*args,**kwargs):

start=time()

result= func(*args,**kwargs)

end=time()print("函数:", func.__name__, "运行时间:", round(end - start, 4), "s")returnresultreturn helper

这里我们的输入是随机生成的在0-100间的整数,我们测试一下在不同数量下的消耗时间:

from functools importwrapsfrom random importrandintfrom time importtime

func1_start=time()

res=quick_sort(array)

func1_end=time()print("函数:func1 运行时间:", round(func1_end - func1_start, 4), "s")

func2_start=time()

func2(array)

func2_end=time()print("函数:func2 运行时间:", round(func2_end - func2_start, 4), "s")

func3_start=time()

func3(array,0,len(array)-1)

func3_end=time()print("函数:func3 运行时间:", round(func3_end - func3_start, 4), "s")

func4_start=time()

func4(array,0,len(array)-1)

func4_end=time()print("函数:func4 运行时间:", round(func4_end - func4_start, 4), "s")

func5_start=time()

func5(array,0,len(array)-1)

func5_end=time()print("函数:func5 运行时间:", round(func5_end - func5_start, 4), "s")

func6_start=time()

sorted(array)

func6_end=time()print("函数:func6 运行时间:", round(func6_end - func6_start, 4), "s")

输入array的定义:

array = [randint(0,100) for i in range(5000)]

需要注意的是,随着数据量的增加,方法4,也就是算法导论中的会出现以下问题:

1503039-20191121193734104-800686864.png

这是因为python中的递归深度是有一定限制的,可以使用如下方法暂时解决该问题:

importsys

sys.setrecursionlimit(100000)

同时,方法4还会出现内存溢出问题,方法4也太坑了。

1503039-20191121194213127-1125346346.png

最后对比一下这些方法消耗的时间:

1503039-20191121194548478-2138615999.png

总结:

方法一、方法二速度较快,同时也较好理解,想要学会快速排序,只要记住方法二即可;

python内置的排序速度还是最快的呀;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值